ROBUST IMAGE IDENTIFICATION WITH SECURE FEATURES FOR JPEG IMAGES

Kenta lida, Hitoshi Kiya Tokyo Metropolitan University, Japan

Summary

- ◆ Our proposed scheme can identify robustly images under various coding conditions.
- ◆ Quantization matrices and positions in which DCT coefficients have zero values are used as features.
- ◆ The features do not provide no visible information.
- ◆ The property of DCT coefficients and the features allow us to provide no false negative matches.
- ◆ Simulation results demonstrate the effectiveness of the proposed scheme.

Background

- ◆ What is "image identification"?
 - ⇒Identification of images which are generated from the same original image under various coding conditions.
- Why is image identification required?
 - ⇒Social networks(SNs) providers often **re-compress** uploaded JPEG images with **the different coding parameter** from that of uploaded one.

- ♦ What are target applications? ⇒Relating images uploaded to SNs with downloaded ones and tamper detection.
- What limitations do conventional schemes using signs of DCT coefficients have?
 The features have to be protected because they have visible information.
- Coding conditions are limited.

Compression-method Compression-method -independent schemes -depend schemes have robustness against

- have strong robustness against JPEG compression.
- do not provide any false negative matches.
- include proposed scheme and signs of coefficients
 -based scheme(ex. [1]).

Images reconstructed from extracted features

JPEG Compression

Scenario

JPEG compression

schemes(ex. [2]).

include image hashing-based

Images uploaded to SNs and downloaded ones are identified.
 Features have to provide no visible information due to privacy concerns or copyright protection.

Property of DCT coefficients

lacktriangle When X_i and Q are generated from the same original image O_i ,

$$\begin{cases} Q(m,n) = 0, & \text{for } T_{X_i}(n) \le T_Q(n) \text{ and } X_i(m,n) = 0, \\ X_i(m,n) = 0, & \text{for } T_{X_i}(n) \ge T_Q(n) \text{ and } Q(m,n) = 0, \end{cases}$$

where $\forall m \in \{0, \dots, M\}$ and $\forall n \in \{0, \dots, N\}$.

 $igoplus X_i$ and Q are generated from the different original images, when

$$\begin{cases} Q(m,n) \neq 0, & \text{for } T_{X_i}(n) \leq T_Q(n) \text{ and } X_i(m,n) = 0, \\ X_i(m,n) \neq 0, & \text{for } T_{X_i}(n) \geq T_Q(n) \text{ and } Q(m,n) = 0, \end{cases}$$
 (1)

where $\exists m \in \{0, \dots, M\}$ and $\exists n \in \{0, \dots, N\}$.

◆ Proposed scheme uses Eq.(1) for identification.

Proposed Scheme

- ◆ Feature extraction process
- Quantization matrices and positions of zero values are used as features.
- The set of features F_{X_i} provides no visible information.

◆ Identification process

Example 1

- Eq.(1) and features are used.
- $\begin{cases} Q(m,n) \neq 0, & \text{for } T_{X_i}(n) \leq T_Q(n) \text{ and } X_i(m,n) = 0, \\ X_i(m,n) \neq 0, & \text{for } T_{X_i}(n) \geq T_Q(n) \text{ and } Q(m,n) = 0, \end{cases}$ (1)

Paper ID: 2499

- Client/user confirms whether Eq.(1) is satisfied at each position.
 - not satisfied at all positions ⇒ Two images have same original image.
 - satisfied at a position \Rightarrow Two images have **different original images**.

Simulation

- Simulation condition
- Dataset :Head Posed Image Database (186 images in "Person01")
- Encoder: Independent JPEG Group(IJG)

Coding conditions

 Identification was performed 186x744 times for each database.

	JPEG images						Quality factors						\mathbf{T}_0					
	Images stored as features in			DB_1		$QF_{X_i} = 50$						IJG						
				DB_2		$QF_{X_i} = 75$								IJG				
					DB_3		$QF_{X_i} = 50$							HVS				
	Query images						$QF_Q = 40, 60, 85, 95$					IJG						
		16	11	10	16	24	40	51	61		16	16	16	16	17	18	21	24
		12	12	14	19	26		60	55		16	16	16		17	19	22	25
		14	13	16	24		57	69	56		16	16					25	29
		14	17	22	29	51	87	80	62		16						31	36
		18	22	37	56		109				17	17	20	24			41	47
	Example of images (size 288x384)	24 49	35 64	55 78	64 87		104 121		$\overline{}$		18	19			35	44		
		72		95			100				21				41	54	70	88
		12	92	95	98	112	100	103	99		24	25	29	36	47	65	88	115
					IJĊ	3								Н١	/S			

- Simulation result
- Measurement

$$TPR = \frac{TP}{TP + FN}$$
, $FPR = \frac{FP}{FP + TN}$

TPR=100% means that there were **no false negative matches**.

 $\begin{array}{|c|c|c|c|c|c|c|} \hline \text{Querying performance for images with QF}_{\it Q} = 60 \\ \hline & \text{scheme} & \text{database} & \text{TPR[\%]} & \text{FPR[\%]} \\ \hline & proposed & DB_1 & 100 & 0 \\ \hline & DB_2 & 100 & 0 \\ \hline & FCS\text{-based[1]} & DB_1 & 100 & 0 \\ \hline & DB_2 & 0 & 0 \\ \hline & image \ hashing[2] & DB_1 & 98.92 & 0.03 \\ \hline & DB_2 & 97.85 & 0.04 \\ \hline \end{array}$

scheme	database	TPR[%]	[FPR[%]
	DB_1	100	0
proposed	DB_2	100	0
	DB_3	100	0
FCS-based[1]	DB_1	75	0
	DB_2	50	0
	DB_3	71.23	0
	DB_1	98.79	0.03
image hashing[2]	DB_2	99.33	0.03
	DB_3	98.52	0.03

Querying performance for all query images

- Only proposed scheme provided no false negative matches.
 - Image hashing-based one did in all cases.
 - FCS-based one did under $QF_{X_i} < QF_O$ or different \mathbf{T}_0

Conclusion

- ◆ Our proposed identification scheme for JPEG images
- uses quantization matrices and the positions of zero values as features.
 - ⇒They do not provide **no visible information**.
- uses the features and the property of DCT coefficients for identification.
 - ⇒The use of them allows us to provide **no false negative matches in principle**.
- outperforms the querying performance.

Reference

- [1] K. lida and H. Kiya, "Secure and Robust Identification Based on Fuzzy Commitment Scheme for JPEG Images," in *Proc. IEEE BMSB*, June, 2016.
- [2] Y. Li and P. Wang, "Robust image hashing based on low-rank and sparse decomposition," in *Proc. IEEE ICASSP*, March, 2017.