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NIR and its acquisition
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Some applications

Haze detection and removal
Shadow detection

Skin smoothing
Material-based segmentation
Vegetation detection

Face authentication



Chromatic aberration (longitudinal)

circle of
confusion

green focus plane

Different wave bands converge at different focal points!

Only one is captured in focus”

*Unless the camera resolution is even lower than the blur radius



Chromatic aberration in color and NIR [1]

Co‘lo NIR

[1] Z. Sadeghipoor, Y. M Lu, E. Mendez, and S. Slisstrunk, “Multiscale guided deblurring: Chromatic aberration correction
in color and near-infrared imaging,” in 23rd European Signal Processing Conference (EUSIPCO), 2015, pp. 2336-2340.



Borrowing from spectral neighbors

Main idea: VN =~ VColor

uniform blur

Solution: model assumption
k = argming||V Ny, — k * VY||5 —

where k is a Gaussian kernel

Ndeblur = argmmNHNblw — k % NH% + HVN — VYH%

Nblur original NIR
Nyebiwr  deblurred NIR where Y is the pixel-wise color average




Shortcoming and solution

Color NIR

Color and NIR similarity: M=1_— VN = V(k+Y)]
VN +V(k=+Y)|

Similarity maps incorporated:

Naeprur = argminy A | Ny, — k * NH% +[[VN-M® VYH%



Full deblurring algorithm

Deblur low-resolution
NIR using
low-resolution Y

Estimate the
remaining blur

original original deblurring ground-
RGB image blurred NIR result truth NIR

Upsample results,
improve similarity
maps, deblur again

original original deblurring ground-

Full resolution NOI RGB image blurred NIR result truth NIR




Limitations: uniform blur assumption

Deblurring

Original NIR image NIR image after deblurring



Limitations: color average as guide

Average sharpness values of different channels.

| R G B Y |
| sharp. | 0.6235 | 0.5942 | 0.6196 | 0.5114 |

Loss in hyperspectral information
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Searching for all information

Spectral correlation

NIR R G B
NIR | 1 | 0.8436 | 0.7938 | 0.6975
R - 1 0.9215 | 0.8510
G - - 1 0.9310
B - - - 1

Spectrally closer

higher

NCC

Bl RAN Y 2 {

p—

Top row: NCC between NIR and BIue

Bottom row: NCC between NIR and Red
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Searching for all information

Spatial correlation

Luminance

High-frequency correlation
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Searching for all information

...but spatial distribution of high-frequency is
affected by object reflectance & chromatic aberration

Gradient difference

Red
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An example of spectral correlations

NIR deblurred from R channel NIR deblurred from Y channel
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An example of spectral correlations

NIR deblurred from R channel NIR deblurred from Y channel
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An example of spectral correlations

NIR deblurred from R channel NIR deblurred from Y channel
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Objective

Leverage spectral-spatial correlations,
making use of the best information for deblurring
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Objective

Leverage spectral-spatial correlations,
making use of the best information for deblurring

Constraint: no apriori knowledge on what spectral information
is the most relevant for every spatial location
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Combine advantages of each channel

NIR deblurred based
on R G and B channels

Final deblurred NIR

Sharpness
Assessment
Sharpness
Assessment

Original out-of-focus NIR
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Sharpness assessment (2]

Step
Differentiation

Sharpness
Estimate

Comparison

Blur Step
Convolution Differentiation

[2] F. Crete, et al. "The blur effect: perception and estimation with a new no-reference
perceptual blur metric." International Society for Optics and Photonics, 2007.



State of
the art [1]:

Deblurring results

A%
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Deblurring results
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State of
the art [1]:



Recombining from RGB

Mean Channel
Contributions

aRr aG asB

w=»  Simpler is better: any band combination loses high-frequency
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Conclusion



Conclusion

» 48.8% increase in sharpness (Crete)



Conclusion

» 48.8% increase in sharpness (Crete)

» Increased depth of field



Conclusion

» 48.8% increase in sharpness (Crete)

» Increased depth of field

» Due to chromatic aberration and reflectance properties,
spectral averaging causes a spatial low-pass filtering



Thank you for your attention

Q&A
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Let F be the luminance component of an image or a video frame of size of m * n pixels. To estimate the blur annoyance
of I the first step consists in blurred 1t in order to obtain a blurred 1mage B. We choose an honzontal and a vertical
strong low-pass filter (1) to model the blur effect and to create By, and By,

I =$x[l 111111l I] h=transpose(hv)=h'

Bra=h*F Bror=hw*F

(1

Then, in order to study the variations of the neighboring pixels, we compute the absolute difference images D_Fy..,
D _Fyuy D_Byr and D_By,, as followed:

D_Fre(i, jy=Abs(F (i, j)-F (i-1,/)) for i=l to m-1, j=0 to n-1 As we explain in the previous subsection, we need to analyze the vanation of the neighboring pixels after the blurring
D Fuarli, j)y=Abs(F (i j)—F(i,j-1)) for j=Il to n—1, i=0 to m—I step. If this variation i1s high, the imitial image or frame was sharp whereas if the vanation is slight, the initial image or
. . _ P . frame was already blur. This varnation is evaluated only on the absolute differences which have decreased:
D Brali,j)=Abs(Bre(i, j)—Breri-1,))) for i=l to m—1, j=0 to n—1

D Brar(i, jy=Abs(Bror(i, j)—Brar(i, j-1)) for j=l to n—1, i=0 to m-1

Wer=Max(0,D_Fre(i, j)-D_Bverli,j)) for i=l to m-1, j=Il to n-1
Vior=Max(0,D _Fuoli, =D _Bro(i,f)) for i=l to m—1, j=l to n-l

Then, in order to compare the variations from the imitial picture, we compute the sum of the coefficients of D_Fj, |
D Fyp D Vi D_Vy,, as followed:

m—1 -1 m—1 -1
.’;_ﬁlr= ZD_H&I'{I,J‘} .’;_ﬂﬁ:rz ZD_EJ’M'{_LJ{}
i, f=1 i j=1
(4)
m—1 n—1 m—1 n—1
."i'_i Ver= ZD_I [eu{f.,_j'] .'i'_i Hor= ZD_I er-{I.,Jl'.}
i, j=1 i, j=1
Finally, we have to normalize the result in a defined range from 0 to 1:
5 ﬁ'e'r _.T_! i'e'." 5 .l’?.nrﬁ.lr _.T_i :rfr.h" {S:

b_ﬁ'e'r= = b_ﬁ.l'ﬂr= =

.’;_E'{r .T_ﬁ.fu.l'

We note that the variations between the two differences images D_F and D_B are always slighter than the values of the
mnitial difference 1image D_F.

Then, we select the blur the more annoying among the vertical one and the horizontal one as the final blur value.

bﬂ”‘_n’"zﬂfﬂxth_ﬁh’l'.,b_ﬁ.l’ur ] “—'ﬂ




Deblurring Algorithm

after a deblurring iteration, there is some blur still left
(call it residual blur)

r-..1

o o | We estimate the residual kernel, k&', by solving:
Iii' (0] — 1_|+h I"'l, |.I Ly _. } (0] : a :-1.'[',%1'['["[11 ||I"'I.-_'lll,l|l ) _ L‘- * T} [0 ”,FI
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(2) Deblurring NIR and computing the residual kemel in the coarsest scale

use it to find a qurry Y to compare it N
to the new deblurred NIR and improve M e . Ik

similarity maps
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(b) Forming similarity maps using the NIR image deblurred in the previous scale

use it to find a blurry Y to compare it (c) Diebliring NIR in scale p. — 1 using accuraie siailarky aps.
to the new deblurred NIR and improve M
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Deblurring Optimization
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Validation on the Dataset

Crete Sharpness i Crete Sharpness Sobel Sharpness Sobel Sharpness

0.4 06 0.8 i i 0.2 0.4 06 0.8 ' 0 5 10 15 20 0 5 10
Sharpness Sharpness Sharpness Sharpness
Crete Sharpness ) Crete Sharpness ~ Sobel Sharpness _ Sobel Sharpness

0.4 06 0.8 ' 0 0.2 0.4 08 0.8 ' : 5 10 13 20 - 3 10
Sharpness Sharpness

Sharpness Sharpness

R-G-B-Y R-G-B-Y
0.4319-0.4044-0.3911-0.3253 8.9360-8.7885-8.3071-8.3479
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Recombined Results
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Blur estimation:

* Elder and Zucker (1998) - Improve on blur estimation from edges
 Hu and Haan (2006)

State-of-the-art strategy:

re-blurring the images
* Crete et al. (2007) |

J. Elder, and S. Zucker. "Local scale control for edge detection and blur estimation." IEEE Transactions on Pattern Analysis and machine intelligence 1998: 699-716.
H. Hu, and G. Haan. "Low cost robust blur estimator." IEEE International Conference on Image Processing, 2006.
F. Crete, et al. "The blur effect: perception and estimation with a new no-reference perceptual blur metric." International Society for Optics and Photonics, 2007.
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