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NIR and its acquisition
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≈ 700 - 1000nm



Some applications
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➢ Haze detection and removal
➢ Shadow detection
➢ Skin smoothing
➢ Material-based segmentation
➢ Vegetation detection
➢ Face authentication
➢ …



Chromatic aberration (longitudinal)

Different wave bands converge at different focal points!

Only one is captured in focus*

*Unless the camera resolution is even lower than the blur radius 4

circle of 
confusion



Chromatic aberration in color and NIR [1]

Color NIR
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[1] Z. Sadeghipoor, Y. M Lu, E. Mendez, and S. Süsstrunk, “Multiscale guided deblurring: Chromatic aberration correction 

in color and near-infrared imaging,” in 23rd European Signal Processing Conference (EUSIPCO), 2015, pp. 2336–2340.



Borrowing from spectral neighbors

Main idea:

Solution:

where Y is the pixel-wise color average
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deblurred NIR

original NIR

where 𝑘 is a Gaussian kernel

uniform blur 
model assumption



Shortcoming and solution

Color NIR

Color and NIR similarity:

Similarity maps incorporated:
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Full deblurring algorithm
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original 
blurred NIR

deblurring
result

ground-
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original 
RGB image

original 
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result
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Limitations: uniform blur assumption

Deblurring
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Original NIR image NIR image after deblurring



Limitations: color average as guide

Loss in hyperspectral information
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Searching for all information
Spectral correlation

Spectrally closer      
higher average NCC

Top row: NCC between NIR and Blue
Bottom row: NCC between NIR and Red

Spectral correlation seen spatially
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Searching for all information

Spatial correlation

Luminance NIR NCC

High-frequency correlation
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Searching for all information

…but spatial distribution of high-frequency is 
affected by object reflectance & chromatic aberration

Red Green Gradient difference
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An example of spectral correlations

13NIR deblurred from R channel NIR deblurred from Y channel



An example of spectral correlations

13NIR deblurred from R channel NIR deblurred from Y channel



An example of spectral correlations

13NIR deblurred from R channel NIR deblurred from Y channel



Objective
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Leverage spectral-spatial correlations,

making use of the best information for deblurring



Objective
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Leverage spectral-spatial correlations,

making use of the best information for deblurring

Constraint: no apriori knowledge on what spectral information
is the most relevant for every spatial location



Combine advantages of each channel
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Final deblurred NIR

NIR deblurred based 
on R G and B channels

Original out-of-focus NIR



Sharpness assessment [2]
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[2] F. Crete, et al. "The blur effect: perception and estimation with a new no-reference 
perceptual blur metric." International Society for Optics and Photonics, 2007.
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Deblurring results

State of 
the art [1]:

Ours:
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Deblurring results

State of 
the art [1]:

Ours:
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24.7

25.3

Mean Channel 
Contributions

R G B

Simpler is better: any band combination loses high-frequency

Recombining from RGB
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Conclusion



Conclusion

➢ 48.8% increase in sharpness (Crete) 
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➢ Increased depth of field



Conclusion

➢ 48.8% increase in sharpness (Crete) 

➢ Increased depth of field

➢Due to chromatic aberration and reflectance properties, 
spectral averaging causes a spatial low-pass filtering



Thank you for your attention

Q&A
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Deblurring Algorithm

after a deblurring iteration, there is some blur still left
(call it residual blur)

use it to find a blurry Y to compare it 
to the new deblurred NIR and improve M

use it to find a blurry Y to compare it 
to the new deblurred NIR and improve M
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Deblurring Optimization
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Validation on the Dataset

Dataset average sharpness results:

R-G-B-Y

0.4319-0.4044-0.3911-0.3253

Dataset average sharpness results:

R-G-B-Y

8.9360-8.7885-8.3071-8.3479
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Recombined Results
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Blur estimation:

• Elder and Zucker (1998)

• Hu and Haan (2006)

• Crete et al. (2007)

Improve on blur estimation from edges

State-of-the-art strategy: 
re-blurring the images

J. Elder, and S. Zucker. "Local scale control for edge detection and blur estimation." IEEE Transactions on Pattern Analysis and machine intelligence 1998: 699-716.
H. Hu, and G. Haan. "Low cost robust blur estimator." IEEE International Conference on Image Processing, 2006.
F. Crete, et al. "The blur effect: perception and estimation with a new no-reference perceptual blur metric." International Society for Optics and Photonics, 2007.
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