

Faculty of Computer Science Dalhousie University

Object localization by optimizing convolutional neural network detection score using generic edge features

Elham Etemad Qigang Gao

September 15, 2017

Content

Introduction

Literature Review

- Object Proposal Generation
- Image Representation
- Object Localization
- Object Recognition
- Object Localization by Optimizing Convolutional Neural Network Detection Score using Generic Edge Features
 - Proposed Method
 - Experimental Results

Conclusion

Outline

2

Introduction

• Literature Review

- Object Proposal Generation
- Image Representation
- Object Localization
- Object Recognition
- Object Localization by Optimizing Convolutional Neural Network Detection Score using Generic Edge Features
 - Proposed Method
 - Experimental Results

• Conclusion

- Object: Area in the image whose visual characteristics is learned by the computer
- Object Detection: Existence of a single object in the image
- Object Localization: Finding the accurate location of the detected object
- Object Recognition: Localizing all the presented objects
- Scene Understanding: Recognizing all objects and finding their roles
- Object Recognition is essential technique in computer vision based applications

Introduction

Figure: The main pipeline for many object recognition methods

Outline

Introduction

Literature Review

- Object Proposal Generation
- Image Representation
- Object Localization
- Object Recognition
- Object Localization by Optimizing Convolutional Neural Network Detection Score using Generic Edge Features
 - Proposed Method
 - Experimental Results

• Conclusion

Literature Review Object Proposal Generation

Object Proposal Generation

- Sliding Window
- Selective Search
- Multi-branch Hierarchical Segmentation
- Complexity Adaptive Distance Metric
- Learning to Segment using RNN

Local Image Representation

- ► Keypoint Detection: SIFT, SURF, ORB, BRISK, FAST
- ► Feature Description: SIFT, SURF, ORB, BRISK, BRIEF, FREAK
- Image Encoding: Vector Quantization, Sparse Coding (SC), LLC, Group SC, Automatic Group SC, Label Constraint SC

Global Image Representation

Color, Texture, Shape

Deep Image Representation

Alex-Net, ZF-Net, VGG-Net

Combined Image Representation

► Local+Global, Local+Deep, Global+Deep, Local+Global+Deep

Object Localization

- Super-pixel Tightness
- Multiple Instance Learning
- Kernel Ridge Regressors

Object Recognition

- R-CNN
- Fast R-CNN
- DeepID-Net

Outline

Introduction

• Literature Review

- Object Proposal Generation
- Image Representation
- Object Localization
- Object Recognition

• Object Localization by Optimizing Convolutional Neural Network Detection Score using Generic Edge Features

- Proposed Method
- Experimental Results

Conclusion

Figure: Main diagram of the proposed object localization method.

Figure: Main diagram of the proposed object localization method.

Candidate Object Detection

13

Figure: Main diagram of the proposed object localization method.

Detection Score

- ► NormalizedFeature = $C \times \frac{Feature}{\frac{1}{N} \times \sum_{T} Feature}$
- ► Train Classifier: $w = \min_{\acute{w}} \sum_{(f,l) \in T} \ell(\acute{w}; (f, l)) + Kr(\acute{w})$
- Find Detection Score: $\varphi(A, T) = f(A) \times w(T) + b(T)$

15

Figure: Main diagram of the proposed object localization method.

Object Localization

Edge Elements

Figure: Main diagram of the proposed object localization method.

Merge Bounding Boxes

Non-Maximum Suppression

Optimization Algorithm

 Algorithm 6 Object localization using the Generic Edge Tokens of the image

 1: procedure GETLoc(Image, CanObj)

- $2: \qquad \triangleright \ Input: \ Image$
- 3: > Input: List of candidate boxes with their detection scores
- 4: \triangleright Output: List of detected boxes with their detection scores
- 5: for Each CandidBox_i do
- 6: while Detection Score Improves do
- 7: FindMergedBoxes(CandidBox, EdgeMap)
- 8: for Each Merged Box j do
- 9: \triangleright Calculate Detection Score $DS_{i,j}$
- 10: $DS_{i,j} = CNNScore(MergedBox_j)$
- 11: \triangleright Find the best merged box
- 12: $SelectedBox = arg max_{j \in MergedBox}DS_{i,j}$
- 13: $CandidBox_i = SelectedBox$

Optimization Iterations

Iter = 0, S=-0.18, IoU = 0.47

Iter = 1, S=0.25, IoU = 0.54

Iter = 2, S=0.89, IoU = 0.58

Iter = 3, S=2.19, IoU = 0.66

Iter = 4, S=3.10, IoU = 0.70

Iter = 5, S=3.26, IoU = 0.76

Figure: Improved bounding boxes after several iterations.

Object Localization Experimental Results

Experimental Framework

- Datasets:
 - PASCAL VOC 2007
 - 20 classes, 9,963 images, 24,640 annotated objects
 - test set, 4952 images
 - validation set, 2510 images
 - PASCAL VOC 2012
 - 20 classes, 22,521 images, 27,450 annotated objects in training set
 - test set, 10991 images

Measurements

- $AP = \frac{number}{total} of detected objects$
- $mAP = \frac{\sum_{N} AP}{N}$, N = number of classes

Packages

- RCNN using AlexNet
- Caffe
- PCPG

Class based and Global mAP

(a) Test 2007	Aero	Bike	Bird	Boat	Bottle	Bus	Car	Cat	Chair	Cow	Table	Dog	Horse	Mbike	Person	Plant	Sheep	Sofa	Train	TV	mAP
RCNN	49.8	61.7	32.8	25.2	24.2	53.1	61.5	49.0	22.8	48.8	33.2	39.4	51.4	51.5	48.4	15.6	50.2	35.0	49.5	51.2	42.7
GET_Loc	49.5	60.9	37.7	31.0	30.3	51.2	61.4	54.4	27.8	53.7	32.6	46.1	57.5	58.4	48.5	20.8	48.2	34.1	47.9	51.6	45.2
Trace_Loc	50.3	61.3	39.8	31.6	30.8	51.9	61.9	48.6	28.9	47.6	34.3	47.1	58.7	59.6	48.5	20.6	49.3	35.5	49.0	52.2	45.4
GT_Loc	50.4	61.3	39.4	31.8	32.0	52.3	62.0	48.9	29.2	47.8	33.3	46.8	58.4	59.6	48.6	20.7	48.4	35.4	49.2	51.9	45.4
(b) Test 2012	Aero	Bike	Bird	Boat	Bottle	Bus	Car	Cat	Chair	Cow	Table	Dog	Horse	Mbike	Person	Plant	Sheep	Sofa	Train	TV	mAP
RCNN	56.4	49.3	31.4	15.4	19.4	43.3	46.1	52.4	13.6	31.9	23.8	48.7	41.1	51.8	44.0	12.8	42.9	20.4	33.7	34.4	35.6
GET_Loc	59.2	52.7	35.5	18.8	22.7	46.0	49.0	55.1	17.2	38.1	26.4	51.3	44.5	53.8	47.0	14.9	44.7	23.3	38.3	39.1	38.9
Trace_Loc	58.4	53.3	35.2	18.8	22.5	46.5	48.6	54.9	16.6	37.8	25.8	51.9	43.7	54.5	47.3	13.8	44.3	22.2	37.8	38.4	38.6
GT_Loc	58.8	52.8	35.0	18.7	23.1	46.8	49.1	55.2	17.5	37.8	26.5	51.4	44.4	54.1	47.1	14.7	45.3	23.1	38.3	39.1	38.9
(c) Validation 2007	Aero	Bike	Bird	Boat	Bottle	Bus	Car	Cat	Chair	Cow	Table	Dog	Horse	Mbike	Person	Plant	Sheep	Sofa	Train	TV	mAP
RCNN	81.1	80.1	70.2	53.7	43.0	71.2	71.3	80.1	61.5	81.3	62.7	81.1	81.6	80.5	50.7	33.8	70.8	72.7	81.5	72.6	69.1
GET_Loc	80.0	80.2	79.0	70.0	47.8	71.0	71.0	79.1	66.9	81.3	71.4	80.0	80.1	79.5	56.9	41.7	69.4	80.3	79.7	81.4	72.3
Trace_Loc	79.5	80.1	69.7	70.4	50.8	71.3	70.7	79.5	58.8	80.7	71.6	79.6	80.5	79.6	56.4	40.5	70.3	80.7	79.5	81.2	71.6
GTLoc	79.6	80.5	79.5	70.2	48.6	71.1	71.0	79.2	60.0	80.7	71.4	80.1	88.3	87.6	56.5	40.9	70.0	80.3	79.2	81.2	72.8
GITOC	19.0	00.5	19.5	10.2	40.0	11.1	71.0	19.2	00.0	00.7	71.4	00.1	00.3	01.0	00.0	40.9	70.0	00.3	19.2	01.2	12.8

Object Localization Experimental Results

mAP vs **IoU** for VOC 2007 Test (a,b,c) and Validation (d,e,f) sets

Object Localization Experimental Results

Samples of images from PASCAL VOC 2007 test set

Yellow: Monitor Green: Person Red: Plant

Yellow: Person Green: Bottle Red: Table

Yellow: Horse Green: Person Red: Car

Yellow: Chair Green: Table

Yellow: Monitor Green: Cat

Yellow: Sofa Green: Person

Yellow: Person Green: Boat

Yellow: Aeroplane Green: Person

Outline

Introduction

• Literature Review

- Object Proposal Generation
- Image Representation
- Object Localization
- Object Recognition
- Object Localization by Optimizing Convolutional Neural Network Detection Score using Generic Edge Features
 - Proposed Method
 - Experimental Results

Conclusion

Conclusion

Future Work

- Improving object localization by using a combination of the image edge, color and texture information, and the learned features of the image
- Proposing a way to have a non greedy suppression of the detected bounding boxes
- Proposing better object representation methods that considers the entire image context

 Ross Girshick, Je Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580-587, 2014.