Energy Based Fast Event Retrieval in Video with Temporal Match Kernel

Junfu Pu¹ Yusuke Matsui² Fan Yang³² Shin'ichi Satoh²³

- 1. University of Science and Technology of China
 - 2. National Institute of Informatics
 - 3. The University of Tokyo

Outline

- Introduction
- Background
- Matching with Energy
- □ Algorithm Speed up with PQ
- Experiments
- Conclusion

Introduction

 Approach for fast content-based search in large video database

Introduction

Related work

- Jerome Revaud, et al., Event retrieval in large video collections with circulant temporal encoding, CVPR, 2013
- Matthijs Douze, et al., Stable hyper-pooling and query expansion for event detection, ICCV, 2013
- Sebastien Poullot, et.al, Temporal matching kernel with explicit feature maps, ACM MM, 2015

Contribution

- Simplify the similarity metric by calculating the energy of the score function
- Derive the energy formulation by Parseval's theorem
- Accelerate the computation with product quantization

Background

$$\mathbf{x} = (x_0, ..., x_t ...)$$
 $\mathbf{y} = (y_0, ..., y_t ...)$ time offset: Δ A kernel defined with \mathbf{x} , \mathbf{y} , and Δ

$$\kappa_{\Delta}(\mathbf{x}, \mathbf{y}) \propto \sum_{t=0}^{\infty} \mathbf{x}_{t}^{T} \mathbf{y}_{t+\Delta} = \left(\sum_{t=0}^{\infty} \mathbf{x}_{t} \otimes \varphi(t)\right)^{T} \left(\sum_{t'=0}^{\infty} \mathbf{y}_{t'} \otimes \varphi(t'+\Delta)\right)^{T}$$

$$\psi_{0}(\mathbf{x})$$

$$\psi_{0}(\mathbf{y})$$

$$\varphi(t) = \begin{bmatrix} \sqrt{a_0} \\ \sqrt{a_1} \cos(\frac{2\pi}{T}t) \\ \sqrt{a_1} \sin(\frac{2\pi}{T}t) \\ \vdots \\ \sqrt{a_m} \cos(\frac{2\pi}{T}mt) \\ \sqrt{a_m} \sin(\frac{2\pi}{T}mt) \end{bmatrix}$$

$$\psi_0(\mathbf{x}) = \left[\mathbf{V}_0^T, \mathbf{V}_{1,c}^T, \mathbf{V}_{1,s}^T, \dots, \mathbf{V}_{m,c}^T, \mathbf{V}_{m,s}^T\right]^T$$

$$\mathbf{V}_0 = a_0 \sum_{t=0}^{\infty} x_t \in \mathbb{R}^D,$$

$$\mathbf{V}_{i,c} = a_i \sum_{t=0}^{\infty} x_t \cos(\frac{2\pi}{T}it) \in \mathbb{R}^D$$

$$\mathbf{V}_{i,s} = a_i \sum_{t=0}^{\infty} x_t \sin(\frac{2\pi}{T}it) \in \mathbb{R}^D$$

 a_i : the fourier coefficients

Background

Final Formulation

$$\kappa_{\mathbf{x},\mathbf{y}}(\Delta) = \left\langle \mathbf{V}_{0}^{(\mathbf{x})}, \mathbf{V}_{0}^{(\mathbf{y})} \right\rangle$$

$$+ \sum_{n=1}^{m} \cos(n \Delta) \left(\left\langle \mathbf{V}_{n,c}^{(\mathbf{x})}, \mathbf{V}_{n,c}^{(\mathbf{y})} \right\rangle + \left\langle \mathbf{V}_{n,s}^{(\mathbf{x})}, \mathbf{V}_{n,s}^{(\mathbf{y})} \right\rangle \right)$$

$$+ \sum_{n=1}^{m} \sin(n \Delta) \left(-\left\langle \mathbf{V}_{n,c}^{(\mathbf{x})}, \mathbf{V}_{n,s}^{(\mathbf{y})} \right\rangle + \left\langle \mathbf{V}_{n,s}^{(\mathbf{x})}, \mathbf{V}_{n,c}^{(\mathbf{y})} \right\rangle \right)$$

□ Similarity Score

$$S(\mathbf{x}, \mathbf{y}) = \max_{\Delta} \kappa_{\mathbf{x}, \mathbf{y}}(\Delta)$$

$$t_m = \arg \max_{\Delta} \kappa_{\mathbf{x}, \mathbf{y}}(\Delta)$$

Matching with energy

$$E(\kappa_{\mathbf{x},\mathbf{y}_1}) > E(\kappa_{\mathbf{x},\mathbf{y}_2})$$
 if $S(\mathbf{x},\mathbf{y}_1) > S(\mathbf{x},\mathbf{y}_2)$

$$\tilde{S}(\mathbf{x},\mathbf{y}) = E(\kappa_{\mathbf{x},\mathbf{y}}(\Delta))$$

Denote the Fourier series of f(x) as

$$f(x) = \frac{1}{2}c_0 + \sum_{n=1}^{m} c_n \cos(nx) + \sum_{n=1}^{m} s_n \sin(nx)$$

The energy of f(x) is

$$E(f(x)) = \int_{-\infty}^{\infty} [f(x)]^2 dx$$

According to the Parseval's Theorem

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} [f(x)]^2 dx = \sum_{i=1}^{n} (c_i^2 + s_i^2) + c_0^2$$

Matching with energy

The final form of the energy $\tilde{S}(\mathbf{x}, \mathbf{y})$ for $\kappa_{\mathbf{x}, \mathbf{y}}(\Delta)$ is

$$\tilde{S}(\mathbf{x}, \mathbf{y}) = E\left(\kappa_{\mathbf{x}, \mathbf{y}}(\Delta)\right)$$

$$= \sum_{n=1}^{m} \left[\left(\left\langle \mathbf{V}_{n, c}^{(\mathbf{x})}, \mathbf{V}_{n, c}^{(\mathbf{y})} \right\rangle + \left\langle \mathbf{V}_{n, s}^{(\mathbf{x})}, \mathbf{V}_{n, s}^{(\mathbf{y})} \right\rangle \right)^{2}$$

Generalized formulation

$$S^{(p)}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{m} (c_i^2 + s_i^2)^p}$$

$$S^{(\infty)}(\mathbf{x}, \mathbf{y}) = \lim_{p \to \infty} \frac{1}{M} \sqrt{\sum_{i=1}^{m} (c_i^2 + s_i^2)^p} = \max_{n} \{(c_n^2 + s_n^2)^p\}$$

- Matching with energy
 - Given a query video, go through the candidate in database
 - Calculate the $\tilde{S}(\mathbf{x}, \mathbf{y})$ between query and candidate
 - Retrieval with $\tilde{S}(\mathbf{x}, \mathbf{y})$
- Advantages
 - More stable (maximum of $S(\mathbf{x}, \mathbf{y})$ is sensitive to noise)
 - Lower computational complexity
 - Further accelerate the computation using approximate nearest neighbor method such as PQ

 \square Algorithm speedup with PQ jth codebook c_{j*} generated from

$$\left\{ \mathbf{V}_{j,c}^{(\mathbf{x}_i)} \colon i \in \{1, \dots, N\} \right\} \cup \left\{ \mathbf{V}_{j,s}^{(\mathbf{x}_i)} \colon i \in \{1, \dots, N\} \right\}$$

- Searching steps
 - Quantize query q to its ω nearest neighbors with $\tilde{S}(\mathbf{x}, \mathbf{y})$
 - Compute the squared distances and dot product for each subquantizer j and each of its centroid c_{ii}
 - Using the subvector-to-centroid distance, calculate the similarity score $\tilde{S}(\mathbf{x}, \mathbf{y})$
 - Order the candidates by decreasing $\tilde{S}(\mathbf{x}, \mathbf{y})$

Experiments

- EVent VidEo (EVVE) dataset [CVPR'13]
 - 620 queries, 2375 database videos, 13 events
 - 1024-D multi-VLAD frame descriptor
- Experimental results

The average mAP using $S^{(p)}(\mathbf{x}, \mathbf{y})$ for different p

Experiment

Results on EVVE and comparison

Table 1: Performance (mAP and time) on EVVE. The bold values show the best score.

ies show the best score.								
Event	Baseline	Ours						
No.	Dascille	\widetilde{S}	\widetilde{S} +PQ	$S^{(\infty)}$ +PQ				
#1	0.1521	0.2013	0.1985	0.2483				
#2	0.2424	0.2503	0.2621	0.2133				
#3	0.1186	0.1130	0.0651	0.0905				
#4	0.1370	0.1390	0.1419	0.1467				
#5	0.2486	0.2538	0.2675	0.2671				
#6	0.2913	0.3189	0.3511	0.3917				
#7	0.1856	0.1854	0.1177	0.1139				
#8	0.2004	0.2216	0.2128	0.2736				
#9	0.6119	0.6351	0.6276	0.6728				
#10	0.3737	0.4519	0.4913	0.5529				
#11	0.7979	0.7879	0.8584	0.8218				
#12	0.2295	0.3084	0.3224	0.4344				
#13	0.6187	0.6331	0.6915	0.6762				
ave-mAP	0.3237	0.3461	0.3545	0.3772				
time	9.31s	1.74s	$pprox \mathbf{0.3s}$	pprox 0.3s				

Table 2: Comparison with state of the art.

methods	state of the art				Ours
	MMV	CTE	SHP	MMV+CTE	Ours
ave-mAP	0.334	0.352	0.363	0.376	0.377

Baseline (temporal match kernel): MM'15

MMV (mean-multiVLAD): CVPR'13

CTE (circulant temporal encoding): CVPR'13

SHP (stable hyper-pooling): ICCV'13

Conclusion

- Propose a fast event retrieval method in video database with temporal match kernel
- Use the energy of the score function as similarity metric
- Derive the simplified energy formulation by using Parsevals's theorem
- With the energy formulation, we use PQ to accelerate the computation
- Achieve competitive performance with the-state-ofthe-art

Thank you! ©