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Introduction

I Predicting depth from a single image is challenging yet valuable task, as often a depth sensor is not available.

I The state-of-the-art method in [1] combines DFCN and CRF:
. DFCN (Deep Fully Convolutional Network) generates reliable unary depth probability;
. CRF (Conditional Random Field) captures the contextual information, and corrects the local error.
. However, only last FCN layer feature is used, which is too coarse.

I The system we proposed:
. uses SCSP (Super Column Super Pixel) feature that makes use of important information hidden in the intermediate layers of DFCN;
. reduces the root mean square (rms) error by 16% compared to [1];
. pickes up more depth detail of the scene.

Original System Framework

I Original System Framework: There are five modules: 1) a deep fully convolutional network module (‘DFCN’), 2) a super-pixel pooling module (‘sp-pooling’), 3)
3-layer fully connected network module (‘3fc’), 4) super pixel pair-wise relationship information generator module (‘pw-gen’), and 5) a CRF module (‘CRF’).

I Only use the last layer of FCN

I Depth prediction error in windows and wall

I Object depth detail missing

Quantitative Method

We use three performance metrics that are commonly used in prior works and in the baseline system [1]:

I Average Relative Error (rel):
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I Root Mean Squared Error (rms):

rms =

√
1

T

∑
p

(
d
gt
p − dp

)2
; (2)

I Average log10 Error (log10):
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where dp and d
gt
p are the predicted depths and ground truth at pixel indexed by p, T is the number of pixels in all the images evaluated.

Training and Testing Datasets

I Indoor dataset from New York University
(NYUv2) 1449 images

I Depth Image collected by Kinect

I Same training/testing split as the baseline

Input GroudTruth Proposed System

Proposed System Detail

DFCN

SP-Pooling Fully Connected

CRF Smoothing

CRF Smoothing

SP-Pooling

SP-Pooling (Detail)

DFCN

I The dashed-line differs from the baseline system.

I DFCN:
. From VGG-16 conv layers and two newly added conv layers [1]
. Hex number denotes each of the conv layers.
. Only some layers are selected for SCSP feature

I SP-Pooling:
. Convert any size of selected conv layer to a stack of 1D depth

features
. SCSP is the concatenation of the stacked 1D depth feature from

selected layers

I Fully Connected: Convert the stacked 1D depth feature to
super-pixel depth unary prediciton

I CRF Smoothing: Smooth and remove local depth error
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Results: Error Rate Compare With Baseline System
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Different Layers Combinations
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Three error metrics for different combinations of layers
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I Middle layers on their owns performs poorly than the last layer, the combinations of middle layers and the last layer provide higher performance.

I Not all the middle layers provide positive contribution, only the layers after max-poolings (such as layer B and E) improves the performance

I The best layer combination ‘SCSP-FEB1’ in our system reduces 16.7% of the ‘rms’ error.

I The best layer combiantion consists of high level feature (layer F), mid-level feature (layer B and E) and low level feature (layer 1)

Results: Examples
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I Examples of input image, ground truth, baseline depth result and proposed depth result.

I The proposed system avoid depth errors of windows (case A) and wall (case C).

I The proposed system picks up more depth detail than the baseline (case B, and D).

Conclusions

I Single image depth prediction system based on SCSP feature

I Picks up more depth detail and reduced rms error by 16% compared to [1]

I Need only fully connected module retrain
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