Greedy Deep Transform Learning

Authors: Jyoti Maggu, Angshul Majumdar
Email: jyotim@aiiitd.ac.in

INDRAPRASTHA INSTITUTE of \ \
INFORMATION TECHNOLOGY DELHI \\\ \

D



mailto:jyotim@iiitd.ac.in

Contents

Introduction
Deep Representation Learning
o Stacked AutoEncoder

o Deep Belief Network

o Deep Dictionary Learning
Transform Learning
Problem Statement
Proposed Technique
Experimental Results
Conclusion
Future work



e A new tool for Deep Learning.
e Stack one transform after another.
Deep e [earning is done in greedy fashion.
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Deep Representation

Learning
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Stacked AutoEncoder
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Deep Representation Nesting one AE into another
Learning

it
1. Stacked AutoEncoder

e Nesting one AE
inside another.

e Solved using greedy
paradigm.
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Deep Representation
Learning

1. Stacked AutoEncoder
2. Deep Belief Network
o Undirected Graph Model.

o Information content is
preserved by cosine
similarity between
projection of data and learnt
features.

o Probabilistic Formulation.

Restricted Boltzmann Machine
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Deep Representation Deep Belief Network: Stacking one RBM
Learning into another.

1. Stacked AutoEncoder
2. Deep Belief Network
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Deep Representation
Learning

1. Stacked AutoEncoder

2. Deep Belief Network
3. Deep Dictionary
Learning

min|[X-DZ||z + ZlIZ,
Dz

Dictionary Learning

e [t learns basis for representing data.
e (Columns of dictionary (Atoms) are
connections between input and

representation layer.

e X=DZ
NN Representation
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Deep Representation Deep Dictionary Learning

Learning e Stacking one layer after another.
o Z1=D2272
1. Stacked AutoEncoder e X=DI1Z1; X=D1D22722

2. Deep Belief Network
3. Deep Dictionary
Learning




Deep Representation

Learning

1. Stacked AutoEncoder

2. Deep Belief Network

3. Deep Dictionary
Learning

4. Deep Transform
Learning

n;iznllTX—lefv + ullZll,

Transform Learning
e While Dictionary Learning is a

synthesis formulation, Transform
Learning is its analysis equivalent.

e Itlearns antransform T such that it
operates on the data X to generate
the coefficients Z.
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Deep Representation

Learning

1. Stacked AutoEncoder

2. Deep Belief Network

3. Deep Dictionary
Learning

4. Deep Transform

Learning

Deep Transform Learning

T1
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Problem
Statement

e (iven data from different classes;
classify them accurately.

e Compare with existing techniques:

SAE, DBN, DDL.
e Reduce train time and test feature
generation time.
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Solution: Transform Learning

n;igllITX—lei- + ullZll,

e But this leads to degenerate solution; trivial would be T=0, Z=0.
® So, to avoid this; new formulation becomes:

n;i;pIITX-ZIIi + ullZIl, + Ae |IT|I; - logdet T)

e This can be solved by alternating minimization iteratively.
Z «— nlgil’lIITX—Zlifi- + pllZll,

I« min||TX-Z|l; + 4 (e TII} - logdet T)
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Greedy Deep
Transform
Learning

Deeper representations are learnt by stacking one
transform after another.
The learning is done in a greedy fashion.

I(-.(L,(p(T,X)))) = Z

- i :

By substituting, T, 7., = 0 12 and so on, till
-1

I,X = ¢7(Z)

min |[T;X - Z,|l; + ATl - logdet T))

Z.= TX
min 11,2, - Zll+ A(ITII} - logdet T)
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Experimental Results:

l.

Accuracy improves by

using Deep architectures.

Datasets used: MNIST, CIFAR-10 and SVHN

Dataset Level 1 Level 2 Level 3
MNIST 97.27 97.66 97.94
CIFAR-10 | 81.12 81.89 82.60
SVHN 91.97 92.68 93.00
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Experimental Results:

Accuracy improves by

using Deep architectures.

Results with Nearest
Neighbours:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with NN classifier using features from DTL:

Dataset Proposed SDAE DBN DDL

MNIST 97.94 97.33 97.05 97.75
CIFAR-10 | 82.60 78.62 73.96 81.09
SVHN 93.00 91.11 88.29 92.26
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Experimental Results:

Accuracy improves by

using Deep architectures.

Results with Nearest
Neighbours:

Results with SRC:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with SRC classifier using features from DTL:

Dataset Proposed SDAE DBN DDL

MNIST 98.96 98.33 98.43 98.81
CIFAR-10 | 85.06 79.32 75.02 83.75
SVHN 94.55 92.05 90.11 93.62
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Experimental Results:

Accuracy improves by

using Deep architectures.

Results with Nearest
Neighbours:

Results with SRC:

Results with SVM:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with SVM classifier using features from DTL:

Dataset Proposed SDAE DBN DDL

MNIST 98.94 97.05 98.44 98.64
CIFAR-10 | 85.55 78.90 74.30 84.96
SVHN 95.42 92.60 89.70 93.81

18



Experimental Results:

Accuracy improves by

using Deep architectures.

Results with Nearest
Neighbours:

Results with SRC:

Results with SVM:;

Feature generation time:

Time in seconds:

Mode Proposed SDAE DBN DDL
Training 25 120408 30071 107
Testing 50 61 50 79
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e Deep Transform Learning(proposed)
outperforms DDL, SDAE and DBN in

Conclusion terms of accuracy.

e Features generated by DTL are good
representations because all classifiers
KNN, SRC and SVM are able to
accurately classify test data.

e Train and Test time is less with
proposed technique.
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e Incorporate stochastic regularization
techniques into DTL framework.

Future Work e Compare regularized DTL with
advanced regularized tools like sparse
AutoEncoder, Contractive
AutoEncoder, sparse DBN.

e Making supervised DTL framework.
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Questions are
welcome.
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