Greedy Deep Transform Learning

Authors: Jyoti Maggu, Angshul Majumdar Email: jyotim@iiitd.ac.in

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Contents

- Introduction
- Deep Representation Learning
 - Stacked AutoEncoder
 - Deep Belief Network
 - Deep Dictionary Learning
- Transform Learning
- Problem Statement
- Proposed Technique
- Experimental Results
- Conclusion
- Future work

Deep Transform Learning

- A new tool for Deep Learning.
- Stack one transform after another.
- Learning is done in greedy fashion.

1. Stacked AutoEncoder

AutoEncoder:

Input layer

output layer

- **Stacked AutoEncoder** 1.
 - Nesting one AE inside another.
 - Solved using greedy paradigm.
 - Used generally for \bullet classification.

output layer

- 1. Stacked AutoEncoder
- 2. Deep Belief Network
 - Undirected Graph Model.
 - Information content is preserved by cosine similarity between projection of data and learnt features.
 - Probabilistic Formulation.

Restricted Boltzmann Machine

- 1. Stacked AutoEncoder
- 2. Deep Belief Network

Deep Belief Network: Stacking one RBM into another.

- **Stacked AutoEncoder** 1.
- 2. **Deep Belief Network**
- 3. **Deep Dictionary** Learning

 $\min ||X - DZ||_F^2 + \lambda ||Z||_I$ D.Z

It learns basis for representing data.

Х

- Columns of dictionary (Atoms) are connections between input and representation layer.
- X = D Z

Dictionary Learning

- 1. Stacked AutoEncoder
- 2. Deep Belief Network
- 3. Deep Dictionary Learning

Deep Dictionary Learning

- Stacking one layer after another.
- Z1 = D2 Z2
- X= D1 Z1; X= D1 D2 Z2

- 1. Stacked AutoEncoder
- 2. Deep Belief Network
- 3. Deep Dictionary Learning
- 4. Deep Transform Learning

$$\min_{T,Z} ||TX-Z||_F^2 + \mu ||Z||_{\theta}$$

Transform Learning

- While Dictionary Learning is a synthesis formulation, Transform Learning is its analysis equivalent.
- It learns an transform T such that it operates on the data X to generate the coefficients Z.

Learning

Deep Transform Learning

Problem Statement

- Given data from different classes; classify them accurately.
- Compare with existing techniques: SAE, DBN, DDL.
- Reduce train time and test feature generation time.

Solution: Transform Learning

$$\min_{T,Z} ||TX-Z||_F^2 + \mu ||Z||_{\theta}$$

- But this leads to degenerate solution; trivial would be T=0, Z=0.
- So, to avoid this; new formulation becomes:

 $\min_{T,Z} ||TX-Z||_F^2 + \mu ||Z||_I + \lambda (\varepsilon ||T||_F^2 - logdet T)$

This can be solved by alternating minimization iteratively.
Z ← min_Z ||TX-Z||²_F + μ||Z||_θ
T ← min_T ||TX-Z||²_F + λ (ε ||T||²_F - logdet T)

Greedy Deep Transform Learning

- Deeper representations are learnt by stacking one transform after another.
- The learning is done in a greedy fashion. $T_N(\phi...(T_2(\phi(T_IX)))) = Z$
- By substituting, $T_{N-I}Z_{N-2} = \phi^{-I}(Z_{N-I})$ and so on, till $T_IX = \phi^{-I}(Z_I)$
- $\min_{T_{1}Z_{1}} ||T_{1}X Z_{1}||_{F}^{2} + \lambda(||T_{1}||_{F}^{2} logdet T_{1})$ $Z_{1} = T_{1}X$ $\min_{T_{2}Z_{2}} ||T_{2}Z_{1} Z_{2}||_{F}^{2} + \lambda(||T_{2}||_{F}^{2} logdet T_{2})$

1. Accuracy improves by using Deep architectures.

Datasets used: MNIST, CIFAR-10 and SVHN

Dataset	Level 1	Level 2	Level 3
MNIST	97.27	97.66	97.94
CIFAR-10	81.12	81.89	82.60
SVHN	91.97	92.68	93.00

- 1. Accuracy improves by using Deep architectures.
- 2. Results with Nearest Neighbours:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with NN classifier using features from DTL:

Dataset	Proposed	SDAE	DBN	DDL
MNIST	97.94	97.33	97.05	97.75
CIFAR-10	82.60	78.62	73.96	81.09
SVHN	93.00	91.11	88.29	92.26

- 1. Accuracy improves by using Deep architectures.
- 2. Results with Nearest Neighbours:
- 3. Results with SRC:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with SRC classifier using features from DTL:

Dataset	Proposed	SDAE	DBN	DDL
MNIST	98.96	98.33	98.43	98.81
CIFAR-10	85.06	79.32	75.02	83.75
SVHN	94.55	92.05	90.11	93.62

- 1. Accuracy improves by using Deep architectures.
- 2. Results with Nearest Neighbours:
- 3. Results with SRC:
- 4. Results with SVM:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with SVM classifier using features from DTL:

Dataset	Proposed	SDAE	DBN	DDL
MNIST	98.94	97.05	98.44	98.64
CIFAR-10	85.55	78.90	74.30	84.96
SVHN	95.42	92.60	89.70	93.81

- 1. Accuracy improves by using Deep architectures.
- 2. Results with Nearest Neighbours:
- 3. Results with SRC:
- 4. Results with SVM:
- 5. Feature generation time:

Time in seconds:

Mode	Proposed	SDAE	DBN	DDL
Training	25	120408	30071	107
Testing	50	61	50	79

Conclusion

- Deep Transform Learning(proposed) outperforms DDL, SDAE and DBN in terms of accuracy.
- Features generated by DTL are good representations because all classifiers KNN, SRC and SVM are able to accurately classify test data.
- Train and Test time is less with proposed technique.

Future Work

- Incorporate stochastic regularization techniques into DTL framework.
- Compare regularized DTL with advanced regularized tools like sparse AutoEncoder, Contractive AutoEncoder, sparse DBN.
- Making supervised DTL framework.

Questions are welcome.