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Better exploration of temporal structure and extraction of video/clip-level
features instead of frame-level features (event recognition)

Better fusion of different channels of information (multi-modal learning)

Better identification of spatial patterns geographically according to video
metadata information like geo-coordinates. (smart city)

» This paper studies a multi-task learning framework that performs the three
highly related steps of action proposal, action recognition, and action
localization refinement in parallel instead of the standard sequential
pipeline that performs the steps in order
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Past work:

1. Depth2Action: Exploring Embedded Depth for Large-Scale Action
Recognition (ECCV 2016)

» This paper performs the first investigation into depth for large-scale
human action recognition in video where the depth cues are estimated
from the videos themselves
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Code and models available:
https://github.com/bryanyzhu/Hidden-Two-Stream

» Our parallel model is more robust than its sequential counterpart when
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