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Hyperspectral Data and Spectral Unmixing
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Chalcedony

Montmorillonite

Kaolinite

Unmixing

Endmembers Abundance maps

separate the hyperspectral data into

• Endmember signatures

• Abundance maps

Hyperspectral data (Cuprite )



Linear Mixing Model for Spectral Unmixing
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Linear Mixing Model (LMM) :  Y AX ε

extracted from Y by PPI [1] , VCA [2]

model errors
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Fully Constrained Least Square Unmixing (FCLSU) :

Non-negative constraint

Sum-to-one constraint

[1] C. Chang et al, IEEE GRL 2006

[2] J. M. P. Nascimento et al, IEEE TGRS 2005.



Spectral Variability
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realY
observedY

 Scaling (mainly) : illumination, topography change

 Complex Noise : environmental condition , sensor noise

 Atmospheric Effects : physically or chemically

 Nonlinear Mixing : intimate or multilayered mixing

 Others: Offset, etc.

Spectral Variability (SV):

=observed real Y Y V

D NV

① Alunite from USGS library (ground measurement)

③②-① all spectral variabilities

② Alunite in AVIRIS Cuprite data

④ Scaled Alunite

⑤②-④ spectral variability without scaling factors



Variations of LMM 
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 LMM with spectral variability:
observed  Y AX ε

= +AX V ε

leading to inaccurate estimation of X, since SV is absorbed by X.

 Extended LMM [2] : =k k k ky AS x ε

diagonal matrix for different endmembers

Advantage: model the scaling factor for each endmember Disadvantage: inaccurate solution: non-convexity

ignore other variabilities

[1] M. A. Veganzones et al, WHISPERS2014. [2] L. Drumetz, et.al, IEEE TIP, 2016.

 Scaled LMM [1] : =k k k ks y Ax ε

Advantage: speed up to estimate scaling factors

obtain a relatively robust solution

Disadvantage: endmembers share the same scaling factor

ignore other variabilities

a scalar shared for all endmembers
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Proposed Spectral Mixture Model
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k k k ks y Ax Eb

a1 a2 a3 e1 e2 e3

y
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x

b

Model 3 : Proposed Model

Simultaneously model scaling factors and 

other spectral variability 

Jointly

scaling factors

k ky Ax

a1 a2 a3

y

x

Model 1 : LMM

Ignore spectral variability

Model 2 : Scaled LMM

a1 a2 a3

y

x

s

k k ksy Ax

Ignore other spectral variabilities

Other spectral variability

e1 e2 e3

y



Model Formulation and Optimization
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The object function of spectral variability dictionary learning can be formulated as

     
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 Sub-problem (1) : Pixel-wise spectral unmixing

 Sub-problem (2) : Spectral variability dictionary updating
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 Regularization terms :  
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Pseudocode
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Regularization Terms 
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A limited number of materials 
1,1

1

2
 X X Sparsity 

promote

 
21

2 F
 B B Many atoms in E should be activated

promote
Density

   2 21
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T T

F F
   E Α Ε E Ε I

promote

Statistics of Cosine Value between A and E

 Enough to represent various SV

 Avoid the trivial solution 
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Abundance Map for Simulated Data

Endmembers used for generating the 

simulated data

A false color simulated data

The abundance maps (each column corresponds to one endmember 

extracted by VCA )  and the first row shows the ground truth
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Abundance Difference Map for Simulated Data
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The abundance difference maps obtained between estimated abundance map 

and true map (each column corresponds to one endmember extracted by VCA )

A false color simulated data

Endmembers used for generating the 

simulated data



Quantity Experiments (Simulated Data)
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Algorithm FCLSU CLSU CLSU+Sparse SCLSU SCLSU+Sparse ELMM Ours

xRMSE 0.0524 0.0380 0.0379 0.0251 0.0248 0.0337 0.0206

yRMSE 0.0151 0.0123 0.0127 0.0123 0.0127 0.0088 0.000006

ySAM 1.9600 1.7713 1.7715 1.7713 1.7715 1.2998 0.0007
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N : the number of pixel

xRMSE : Abundance Root Mean Square Error 

yRMSE : Reconstruction Root Mean Square Error

ySAM :  Average Spectral Angle Mapper



Abundance Map for Real Data
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Selected Endmembers from Spectral Library *

Cuprite Data

* Due to the complexity of spectral variability in Cuprite Data, here we get 

help from spectral library to construct endmember dictionary.
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Conclusion and Future work
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1. A novel spectral mixing model is proposed to simultaneously consider the scaling factors (main) 

and other spectral variabilities.

2. A data-driven dictionary learning method is explored with the low-coherent regularization to design 

the spectral variability dictionary.

3. An alternating iterative optimization strategy is applied to solve the proposed model using ADMM-

based framework.

Future work

Conclusion

1. Spatial regularization should be able to further improve the performance of spectral unmixing.

2. Distributed strategy could be introduced to promote a large-scale spectral unmixing.
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