

Introduction and Motivation >How to represent the content of a video?

Current video representation

- •SIFT, HOG, HOF, MBH -> Bag-of-words (BOW)
- Features from DNN

How does a human understand the video?

The Proposed Framework

Video Object Graph (VOG) : a single holistic graph representation for describing the semantic content of a video

- the detected objects
- their individual attributes
- Relationship between objects
- Graph Nodes: objects in a video, described by different spatial and temporal attributes
- > Graph Edge: relative spatial relationships between object

VOG for 'Birthday' videos

An Object Based Graph Representation For Video Comparison

Xin Feng¹, Yuanyi Xue², Yao Wang² 1.Chongqing University of Technology, 2. NYU Tandon School of Engineering

Node and Edge Attribute

- Node spatial attributes: Shape context and RCNN feature
- > Node temporal attribute: Motion trajectories of objects
 - Object tracking
 - Correcting global motion for object trajectory The global motion correction

- Magnitude spectrum
- Peak frequencies

"Sliding"

as well as their spatial displacement

• Two descriptors on the Fourier spectrum of the trajectory

two VOGs

$$\mathcal{M}(\mathbf{X}) = \sum_{i}^{n}$$

	BoW	C3D_ <i>fc6</i>	VOG (proposed)
SimRatio	0.87	1.10	1.47
Precision	14.4%	41.7%	68.9%
Recall	33.3%	77.8%	100%
Time Cost(s)	0.59	0.06	0.61

Itrajectory differences between the two connecting objects • to reveal the consistencies of the motion between two objects

The proposed VOG provides a good visual "thumbnail" representation of the video content, and is used for video retrieval, video event clustering, video summarization, etc

Graph Matching for Video Comparison

Comparison between two videos using graph matching between

 $\sum_{i_1,i_2} x_{i_1,i_2} k^o_{i_1,i_2} + \alpha \sum_{i_1 \neq i_2, j_1 \neq j_2} x_{i_1 i_2} x_{j_1 j_2} k^e_{e(i_1,j_1),e(i_2,j_2)}$ s.t. $\mathbf{X} \in \{0, 1\}^{n_1 \times n_2}, \mathbf{X}\mathbf{1}_{n_2} \le \mathbf{1}_{n_1}, \mathbf{X}^T \mathbf{1}_{n_1} \le \mathbf{1}_{n_2}$ Datasets

- Have well-defined objects (people, dog,etc) Columbia Consumer Video (CCV) dataset
- In our study, we use videos from 4 event categories

Experiment Results

The propose VOG is verified on video comparison on the four event detection task. Compared with : 3D sift +BOW, C3D

Conclusion