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Introduction
With the increasing availability of data we often come upon problems that
collect data from more than once source, or modality. To properly handle
these problems, we need to compare data across the different modalities.
The step presents a lot of difficulty, as it requires some understanding of
the format of the data [5]. Our goal is to create a general algorithm for
processing multiple modalities simultaneously.

In this paper, we assume our datasets are co-registered (each modality
contains the same number of points, and they share a common index-
ing), as is often the case in image processing problems. Our method
compares graph representations of each modality, extracts features in the
form of eigenvectors of the graph Laplacian, then applies standard data-
segmentation algorithms on these features to obtain a final classification.

1 Feature Extraction

Graph Representation

• Datasets X1, X2, . . . , Xk, with
∣∣X1
∣∣ = · · · = ∣∣Xk

∣∣ = m.

• E` = distance matrix. e`ij =
∥∥x`i − x`j∥∥.

• λ` = stdev
(
E`
)
, scaling factor.

• X = (X1, X2, . . . , Xk) ⊆ Rn×(dim1+···+dimk)

the concatenated dataset.

• W = similarity matrix. wij = similarity between xi and xj.

wij := exp
(
−max

(
e`ij/λ` | 1 ≤ ` ≤ k

))
. (1)

With the max norm, two nodes are considered similar only if they are sim-
ilar in every individual modality. Heuristically, this emphasizes the unique
information that each dataset brings.

The Graph Laplacian (GL) and Eigendecomposition
Once we have created the weights, we define the normalized graph Lapla-
cian (GL) [9].

Lsym = I −D−1/2WD−1/2, (2)
WhereD is the diagonal matrix consisting of degrees of nodes. We use the
graph Laplacian in our energy minimizations below.

We use the GL to solve the graph N-cut problem. Given a partition of
our into subsets A1, A2, . . . , Am, we define

NCut(A1, . . . , Am) =
1

2

m∑
i=1

W (Ai, A
c
i)

vol(Ai)
. (3)

Minimizing the NCut separates dissimilar nodes (the W (Ai, A
c
i) term) and

groups similar nodes (the vol(Ai) term). Solving the graph min-cut prob-
lem is equivalent to finding an n×m indicator matrix u, where uij = 1 if
xi ∈ Aj, and uij = 0 otherwise. Note that

NCut(A1, . . . , Am) = Tr
(
uTLsymu

)
. (4)

Minimizing this energy is computationally infeasible [4]. We relax the
problem, allowing u to be an orthogonal matrix. We find

argminu∈Rn×mTr
(
uTLsymu

)
where uTu = I. (5)

This problem is solved by choosing the columns of u to be them eigenvec-
tors of Lsym corresponding to the m smallest eigenvalues. These eigen-
vectors are features extracted from the original dataset X .

Example: Data Fusion Contest 2015 [1]

Figure 1: RGB Data Figure 2: Lidar Data

Figure 3: Eigenvector 1 Figure 4: Eigenvector 2

Segmentation
We apply two different segmentation algorithms to these features. The first
is Spectral Clustering, in which we directly apply k-means to the feature
vectors. The second is Graph MBO, explained below.

Graph MBO
Here we minimize a Ginzburg-Landau energy with a semisupervised term
[3, 7, 8]. Have u an n×m assignment matrix with

uij ≥ 0 ∀i, j,
m∑
j=1

uij = 1. (6)

The final output of the algorithm will be a matrix u where each value is
either 0 or 1. The energy we minimize is

E(u) = ε · Tr
(
uTLsymu

)
+
1

ε

∑
i

W (ui)

+
∑
i

µ

2
λ(xi) ‖ui − ûi‖2L2

. (7)

The first term is the graph cut energy, similar to (3). The second term is
the multiwell potential W (ui) =

∏m
k=1

1
4 ‖ui − ek‖

2
L1

where ek is the k-th
standard basis vector. The last term includes the fidelity, where û repre-
sents the semisupervised input,

λ(xi) =

{
1 if xi is part of fidelity input
0 else

, (8)

We minimize this via iteritive diffusion and thresholding. If un represents
the n-th iterate, then to calculate un+1 we first diffuse

un+
1
2 − un

dt
= −Lsymun − µλ(x)(un − û). (9)

Then threshold each row

un+1i = er where r = argmaxju
n+1

2

ij . (10)
The diffusion calculation can be done very efficiently by using the eigen-
decomposition of Lsym (the feature vectors described in (5)). If we write
change coordinates to the eigenbasis, then the diffusion step reduces to
solving for coefficients

an+1k = (1− dt · λk) · ank − dt · dnk. (11)
where λk is the k-th eigenvalue of Lsym, in ascending order.

Results: Data Fusion Contest 2015 [1]

Figure 5: Spectral Clustering Figure 6: Graph MBO

Results: Umbrella Data [11]

Figure 7: RGB Data Figure 8: Lidar Data

Figure 9: Eigenvector 1 Figure 10: Eigenvector 2

Figure 11: Spectral Clustering Figure 12: Graph MBO

Results: Jade Plant Data [11]

Figure 13: RGB Data Figure 14: Lidar Data

Figure 15: Spectral Clustering Figure 16: Graph MBO
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[11] SCHARSTEIN, D., HIRSCHMÜLLER, H., KITAJIMA, Y., KRATHWOHL, G., NEŠIĆ, N., WANG, X., AND WESTLING, P. High-resolution stereo datasets with subpixel-accurate ground truth. In Proceedings of the 36th German Conference on Pattern Recognition (september 2014).

[12] SEDIGHIN, F., BABAIE-ZADEH, M., RIVET, B., AND JUTTEN, C. Two Multimodal Approaches for Single Microphone Source Separation. In 24th European Signal Processing Conference (EUSIPCO 2016) (Budapest, Hungary, Sept. 2016), pp. 110–114.

[13] WOODWORTH, J. T., MOHLER, G. O., BERTOZZI, A. L., AND BRANTINGHAM, P. J. Non-local crime density estimation incorporating housing information. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372, 2028 (2014).


