A New Blind Color Image Watermarking Based On A Psychovisual Model And Quantization Approaches

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM laboratory, UMR CNRS 7252

September 18th, 2017

Introduction

Definition

- Embed a hidden message into a host image.
- Robustness of the watermark to various image processings such as JPEG compression, amplitude scale change, noise, filters, ...

Contributions

- Algorithm for color images.
- Improvement of watermark invisibility using a psychovisual model of the Human Visual System (HVS).
- Improvement of watermark robustness compared to performances in grayscale.

Table of contents

Literature Color quantization Psychovisual approach Color algorithm Experiments Conclusion

- 2 Color quantization
- Osychovisual approach
- 4 Color algorithm

5 Experiments

< A >

< 3 > < 3 >

3

Literature

Color watermarking algorithms

- Blue component (Kutter et al. 1997)
 → Low sensitivity of the HVS in this channel.
- Luminance and Saturation components (HSV) (Yu et al. 2001)
 → Robustness with high energy components with reduced
 watermark invisibility.
- 3D vector approach : eigen image concept and PCA decomposition (Abadpour et al. 2008)
 - \rightarrow Vector quantization on color pixel values.
- Color histogram approach (Chareyron et al. 2006) \rightarrow Uses the HVS low sensibility to perceive small color differences.

2 Color quantization

- Bychovisual approach
- ④ Color algorithm
- 5 Experiments

6 Conclusion

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM la A New Blind Color Image Watermarking Based On A Psychovisi

イロト イポト イヨト イヨト

э

Grayscale to color quantization

Embedding

• For all color pixel P,

$$P' = P + k.u_P \tag{1}$$

$$k = (Q(K) - K) / ||u_P||^2$$
 (2)

with Q a quantization function (such as Lattice QIM quantizer), $K = \langle P, u \rangle$ and u a direction vector.

Direction vector choices

- Constant Approach (CA) : *u_P* is constant.
- Adaptive Approach (AA) : u_P is psychovisually adapted to color P to minimize visual quantization noise.

Direction vector strategies

Detection

• From the modified value of P' noted P'', estimate Q(K). We have :

$$Q(K) = < P', u_P > \simeq < P'', u_{P''} >$$
(3)

3 N 4

Conditions for detection

• If P' and P'' are different, we need u_P and $u_{P''}$ close enough to ensure detection.

Color problem

\rightarrow Same numerical distortion for both approaches.

Host image

CA (random vector)

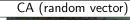
< A

Color problem

\rightarrow Same numerical distortion for both approaches.

Host image

CA (random vector)



Color problem

\rightarrow Same numerical distortion for both approaches.

Host image

2 Color quantization

Osychovisual approach

④ Color algorithm

5 Experiments

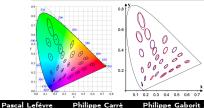
6 Conclusion

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM la A New Blind Color Image Watermarking Based On A Psychovisi

イロト イポト イヨト イヨト

э

Color differences perception


JND concept

• Extension of MacAdam Ellipses to 3D.

 \rightarrow Construction of perception ellipsoids with constant psychovisual distortions in RGB.

Model calibration

- Ellipsoids converted in the luminance plane xyY.
- Constants calibrated to fit MacAdam ellipses.

Color differences perception

JND concept

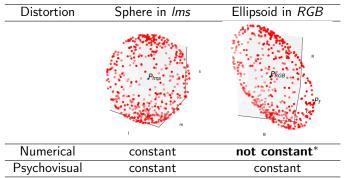
• Extension of MacAdam Ellipses to 3D.

 \rightarrow Construction of perception ellipsoids with constant psychovisual distortions in RGB.

Biological model

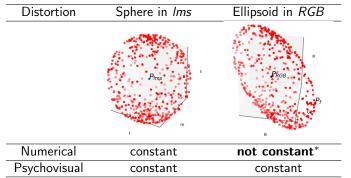
- Perception is a non-linear phenomenon.
 - \rightarrow Photoreceptor model for cones *L*, *M* and *S* in the human retina.

$$x = \frac{\alpha X}{X + X_0} \tag{4}$$

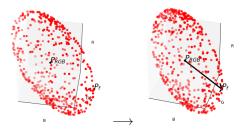

Perception volumes

 \rightarrow Distortions between the center P_{RGB} and points on the surface.

Perception volumes


 \rightarrow Distortions between the center P_{RGB} and points on the surface.

* More numerical distortions by choosing the furthest points from P_{RGB} for the same psychovisual distortion cost.


Perception volumes

 \rightarrow Distortions between the center P_{RGB} and points on the surface.

* More numerical distortions by choosing the furthest points from P_{RGB} for the same psychovisual distortion cost. \implies More robustness!

Direction vector extraction

Optimal direction for a better psychovisual invisibility

• Ellipsoid center P_{RGB} and furthest point from P_{RGB} noted P_f .

$$u_{P_{RGB}} = \overrightarrow{P_{RGB}P_f}$$
(5)

 \rightarrow Psychovisual distortion is constant.

 \rightarrow Numerical distortion is maximized.

2 Color quantization

Bychovisual approach

4 Color algorithm

5 Experiments

6 Conclusion

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM la A New Blind Color Image Watermarking Based On A Psychovisi

イロト イポト イヨト イヨト

э

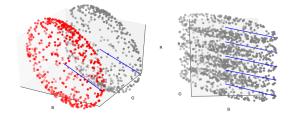
Embedding

- For every colors P, compute u_{P_i} .
- Ompute S_i =< P_i, u_{Pi} > for 1 ≤ i ≤ N_P, N_P the number of quantized colors.
- **3** QIM embedding with $Q_m : S'_i = Q_m(S_i, \Delta)$ and m = 0, 1.
- Compute the modified colors : $P'_i = P_i + (S'_i S_i)u_{P_i}/||u_{P_i}||^2$.

< 6 >

< 国→ < 国→

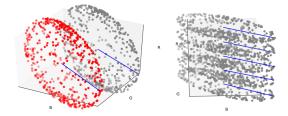
Embedding


- For every colors P, compute u_{P_i} .
- Ompute S_i =< P_i, u_{Pi} > for 1 ≤ i ≤ N_P, N_P the number of quantized colors.
- **2** QIM embedding with $Q_m : S'_i = Q_m(S_i, \Delta)$ and m = 0, 1.
- Compute the modified colors : $P'_i = P_i + (S'_i S_i)u_{P_i}/||u_{P_i}||^2$.

Detection

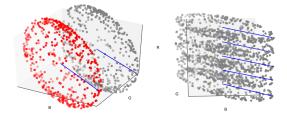
- For every modified colors P'', compute $u_{P''_i}$.
- ² Compute the scalars back : $S_i'' = \langle P_i'', u_{P_i''} \rangle$.
- Solution Apply QIM decoder on the modified scalars S''_i .

< 6 >


Detection and robustness

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM la A New Blind Color Image Watermarking Based On A Psychovisi

< A


Detection and robustness

Direction stability

 \rightarrow Direction vectors are stable from one color to another.

Detection and robustness

Direction stability

 \rightarrow Direction vectors are stable from one color to another.

In practice

 \rightarrow From grayscale to color methods : we can have robustness improvements.

- 2 Color quantization
- Osychovisual approach
- ④ Color algorithm

6 Conclusion

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM la A New Blind Color Image Watermarking Based On A Psychovisi

イロト イポト イヨト イヨト

э

Validation protocol

Implementation details

- \bullet Lattice QIM (LQIM) : vector quantization on lattice cosets Λ_0 and $\Lambda_1.$
- Soft Decision Detection QIM (SDQIM).
- Grayscale and color methods with the same numerical distortion respectively.
- Image processings : JPEG compression, gaussian noise.

Color adaptations

- Grayscale approach (GA)
 - \rightarrow Constant approach with u = (1, 1, 1).
- Adaptive approach (AA)
 - \rightarrow Each color *P* has an adapted direction u_P .

Invisibility experiments

 \rightarrow Visual validation : pairs of images (GA/AA)

Invisibility experiments

 \rightarrow Visual validation : pairs of images (GA/AA)

Invisibility experiments

 \rightarrow Visual validation : pairs of images (GA/AA)

Invisibility experiments

 \rightarrow Visual validation : pairs of images (GA/AA)

Invisibility experiments

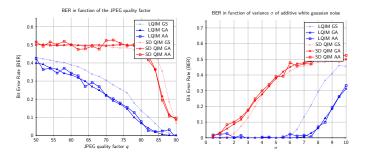
 \rightarrow Visual validation : pairs of images (GA/AA)

Invisibility experiments

 \rightarrow Visual validation : pairs of images (GA/AA)

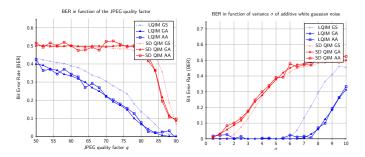
Invisibility experiments

Pasc


 \rightarrow Visual validation : pairs of images (GA/AA)

 \rightarrow Tests subjects validation : which image is less noisy?

	Approaches	GA	AA							
	Votes	$4\% \pm 3\%$	$96\%\pm3\%$		• • •	< 🗗 >	<	< ≣ >	æ	৩৫৫
cal	l ofèrma Dhilinna (Carrá Dhilinna		New Plind	Color Im		average line	a Based	0	Development


Robustness experiments

Remarks

 From GS to GA/AA : improvement for LQIM and stability for SDQIM.

Robustness experiments

Remarks

- From GS to GA/AA : improvement for LQIM and stability for SDQIM.
- Similar performances of (GA)/(AA) but better visual quality for (AA).

Literature

2 Color quantization

Osychovisual approach

④ Color algorithm

5 Experiments

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM la A New Blind Color Image Watermarking Based On A Psychovisi

イロト イポト イヨト イヨト

э

Conclusion and perpectives

Conclusion

- Psychovisual approach for quantization methods.
- Adaptability of any grayscale watermarking method to color.
- Watermark invisibility and robustness improvements.

Conclusion and perpectives

Conclusion

- Psychovisual approach for quantization methods.
- Adaptability of any grayscale watermarking method to color.
- Watermark invisibility and robustness improvements.

Perspectives

- Make a visual quality evaluation with more test subjects.
- Study of this approach in transformed spaces such as DCT or DWT domains.
- Reduce errors by using error correcting codes such as BCH or RS codes.

Thank you for your attention ! Any question ?

Pascal Lefèvre Philippe Carré Philippe Gaborit XLIM la A New Blind Color Image Watermarking Based On A Psychovisi

イロト イポト イヨト イヨト

э