

Motion Feature Augmented Recurrent Neural Network for Skeleton-Based Dynamic Hand Gesture Recognition

ICIP 2017

IEEE International Conference on Image Processing September 17-20, 2017, Beijing, China

Xinghao Chen, Hengkai Guo, Guijin Wang*, Li Zhang Department of Electronic Engineering, Tsinghua University {chen-xh13@mails, wangguijin@}tsinghua.edu.cn

INTRODUCTION

- ☐ Dynamic hand gesture recognition has attracted increasing interests because of its importance for human computer interaction.
- ☐ In this paper, we propose a new motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition.

FRAMEWORKS

Finger motion features and global motion features are extracted from the input dynamic hand gesture skeleton sequence. These motion features, along with the skeleton sequence, are fed into a recurrent neural network (RNN) to get the predicted class of input gesture.

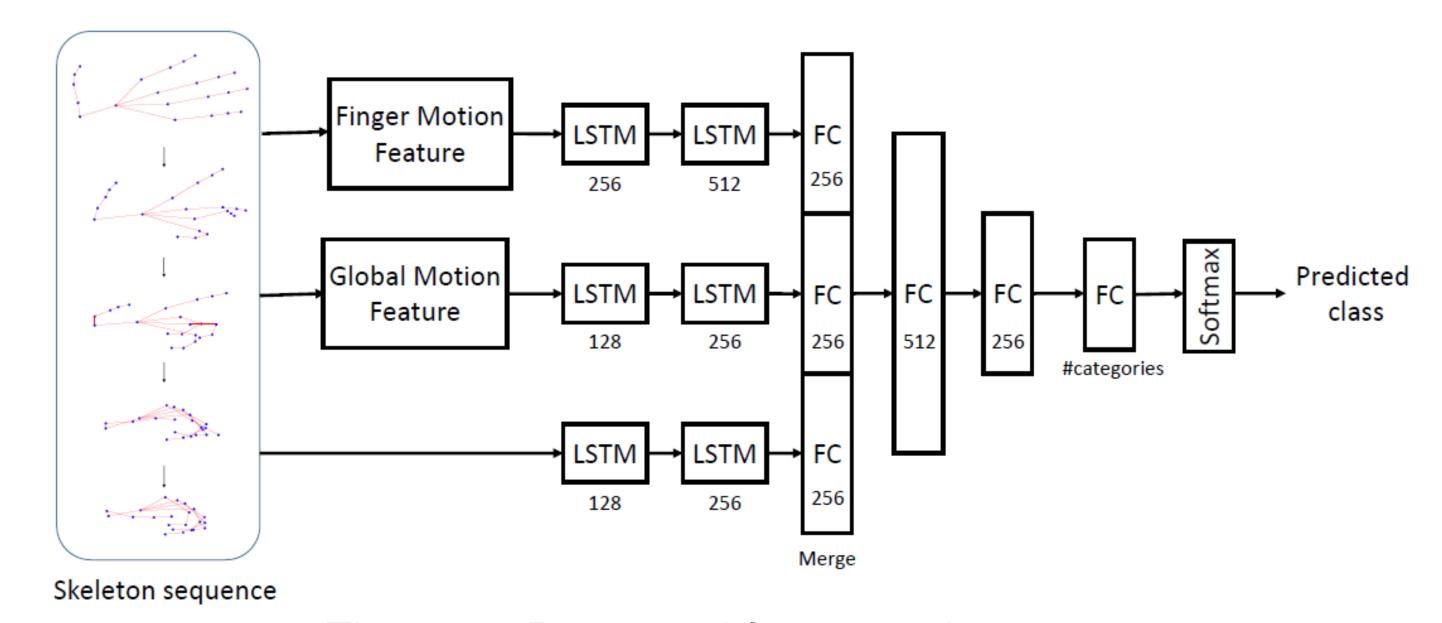


Figure 1: Proposed framework

METHODS

☐ Finger Motion Feature

Motivation: Joint coordinates are highly correlated, Hand model parameters are more compact and effective representations

METHODS

☐ Finger Motion Feature

How to represent a hand skeleton: angles between conjunct bones $\Theta^t = \mathcal{IK}(s^t)$

Impose temporal information into the features

$$\Theta_{op}^t = \Theta^t - \Theta^1 \qquad \Theta_{dp}^t = \{\Theta^t - \Theta^{t-s} | s = 1, 5, 10\}$$

Concatenate all above features to get finger motion features $\mathcal{F}^t(\mathcal{S}) = [\Theta^t, \Theta^t_{op}, \Theta^t_{dp}]$

☐ Global Motion Feature

Motivation: to model the global rotation and direction of hand skeleton trajectory

First get the rotation and translation

$$[\mathcal{G}_l, \mathcal{G}_r] = Kabsch(p^t, p_0)$$
 $\mathcal{G}_r = (r_x, r_y, r_z)$ $\mathcal{G}_l = (\rho, \theta, \phi)$

Discretize the amplitude

$$\int_0^{\eta_i} g(x)dx = \frac{i}{M} \int_0^{\sigma} g(x)dx \qquad \Phi^t = [\rho_{bin}, \theta, \phi, r_x, r_y, r_z]$$

Motion features

$$\Phi_{op}^{t} = \Phi^{t} - \Phi^{1}$$

$$\Phi_{dp}^{t} = \{\Phi^{t} - \Phi^{t-s} | s = 1, 5, 10\}$$

$$\mathcal{G}^{t}(\mathcal{S}) = [\Phi^{t}, \Phi_{op}^{t}, \Phi_{dp}^{t}]$$

EXPERIMENTS

Datasets

DHG-14/28 [14]: 14/28 gestures, 20 participants 2800 sequences.

☐ Self Comparison

Table 1

☐ Comparison with State-of-the-arts

Table 2 & Figure 2

Table 2. Comparison of recognition rates (%) on DHG-14/28 dataset.

Method		DHG-28		
Ivictilou	fine	coarse	both	both
Smedt et al. [14]	73.60	88.33	83.07	80.0
Ours	76.9	89.0	84.68	80.32

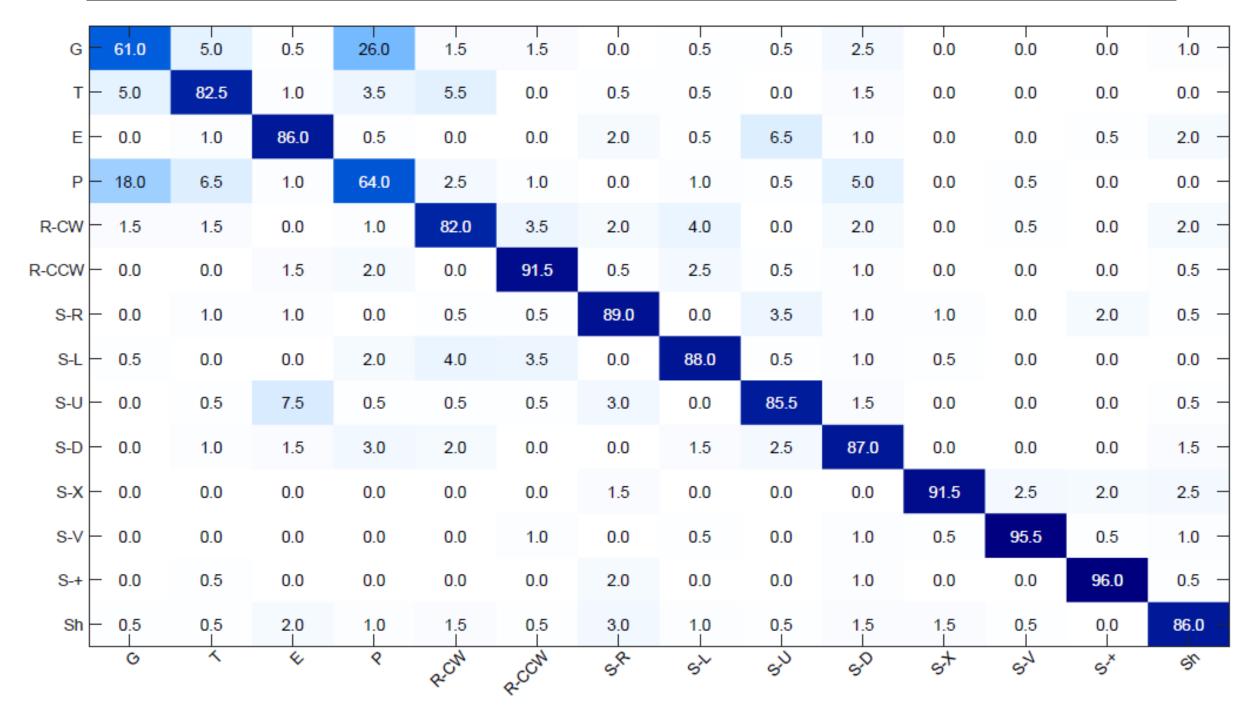


Figure 2: Confusion matrix

Table 1. Recognition rates (%) of self-comparison experiments on DHG-14 dataset.

Method	fine		coarse			both			
	best	worst	avg±std	best	worst	avg±std	best	worst	avg±std
Skeleton	86.0	42.0	61.2 ± 12.37	97.78	74.44	86.44 ± 7.94	93.57	67.86	77.43 ± 6.82
Motion Features	84.0	46.0	71.5 ± 11.44	96.67	64.44	81.94 ± 8.17	90.0	58.57	78.21 ± 7.49
Ours	90.0	56.0	76.9 ± 9.19	97.78	72.22	89.0 ± 7.55	94.29	67.86	84.68 ± 6.67

REFERENCES

[14] Smedt et al., CVPRW(2016): Skeleton-Based Dynamic Hand Gesture Recognition