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Motivation: Working on retinal images to classify for diabetic

retinopathy.

Retinal image Classification = Lesion marking output
Output

Healthy

Algorithm T

« Given a retinal image we want to classify the entire image for diabetic retinopathy.

« Additionally the individual lesions in the image responsible for the classification should be highlighted to increase trust of
medical experts.

« The training of the algorithm has only image-level labels, i.e. no information about pixel-wise lesions
(semi-supervised object localization).

Image source: [1]
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Diabetic retinopathy (DR): Some facts

2 In 2014 there have been 415m adults living with diabetes. < About 7m of people with diabetes are blind due to DR.

About 145m (35%) had some form of diabetic retinopathy (DR).
Among these 45m (11%) had vision-threatening DR. In 2040

about 642m adults will have diabetes. ISSUE
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< Low- and middle-income countries account for about 75% of the 2 There are no early symptoms, but early detection and
global diabetes cases. But medical infrastructure is lacking to treatment can reduce the risk of vision loss by 95%.

identify and treat this disease.

Sources: [2, 3, 4]
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Why Bosch is in this topic? Bosch Eye Care Solution*

» Bosch India provides a non mydriatic, handheld camera for fundus imaging.
» It is easy to use, portable and suitable for mass screening.
» The main target market is mass screening in developing countries.

» Mass screening will be supported by machine learning algorithms for classification
and object localization.

» Bosch Center for Artificial Intelligence (BCAI) supports with algorithmic development.

Handheld camera for fundus imaging

Chancellor of Germany Angela Merkel
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* More information at http://www.bosch-eyecare.com/




IEEE International Conference on Image Processing 2017

Method: Class Activation Maps with Global average pooling
= Within a CNN, the last layer is set as a Global average pooling (GAP) layer.

1. GAP: From each of the K activation maps A* € R**? (width u and height v) the average value is calculated:

1
GAP: RV 5 R, Ak > — Z Ak
- - UV . ) xy

2. Weights wy,: The GAP layer is fully connected to output neurons via wg; c € {healthy, unhealthy}

y¢ = Z wi GAP(A®)
k

Weights w{ encode the importance of each feature map A* with respect to class c.

3. Training: The network is trained in a weakly-supervised fashion, i.e. only labels on image level (healthy,
unhealthy) are available. No label information about any lesion type is given.

Convolutional Neural Network GAP

w¥nh
k ealtfly
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Based on Zhou et al. ,Learning Deep Features for Discriminative Localization® [5]
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Method: Class Activation Maps with Global average pooling

4. Localization map L: Given an image, the weighted sum of the activation maps of the last convolutional layer
forms the localization map.
L¢ = z wi A"
k

5. Upscaling: The localization map is bilinear upscaled to image resolution
6. Overlaying: The original image is overlayed with the localization map

O ® ®

\

Localization map L L + original image

Class Activation Mapping
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From localization map to True positive / False positive / false

negative

Localization Map

Jan Kahler | Bosch Center for Artificial Int

Prediction Map

elligence (BCAI) | 20/Sept/2017

Resultant Map

All regions > 0.65 of
maximum value are
marked as a lesion.

Overlapped
region (TP)

Falsely predicted
L¢ ] region (FP)

Ground Truth Map

Region not
covered (FN)
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The network structure

» Network and training configuration:
» VGG-16 based architecture
» Batch normalization
» L2 Regularization with weight decay factor of 0.0005
» Gradient descent with momentum 0.8

» Initial learning rate of 0.01 decayed by 1%
after each epoch

» 150 epochs for training 1

512

—
p00|3 —
convd_1 AN

A
v

conv2_2

Conv2_3

conv3 2 Ay

512

conv3_3

convs 3 A

convl 1
convl 2
pooll
conv2 1
pool2

/
conv3 1 A

convs 2 Ay

Jan Kohler | Bosch Center for Artificial Intelligence (BCAI) | 20/Sept/2017

& BOSCH




IEEE International Conference on Image Processing 2017
Experiments: Data sets used

Training data set: Test data set:
Kaggle data set on diabetic retinopathy [6] DiaretDB1 data set [1]

Input Hard Exudates Hemorrhages Soft Exudates Red Small Dots
» 88,702 images of which 80% are used for training and
20% for validation » 89 high resolution images used for testing
» No information about lesions given > Lesions marked by four experts.
» Collected in a clinical setting with high-end, stationary > Regions with more than 75% consensus among the
equipment. experts are considered as positive.
» Five stages of diabetic retinopathy: For classification
the first two classes were grouped into non-referable
DR and the remaining three classes into referable DR.
Jan Kohler | Bosch Center for Artificial Intelligence (BCAI) | 20/Sept/2017 ((EJ)J BOSCH
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Results for object localization on diaretDB1 — example images

Test image [1] Ground truth [1] Our result: Ground truth and
localization map our predicted regions
Ground truth: Blue -- Soft Exudates Red -- Hemorrhages

Our result: Green -- Our predicted lesion regions

Jan Kohler | Bosch Center for Artificial Intelligence (BCAI) | 20/Sept/2017 N
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Results for object localization on diaretDB1 — example images

Test image [1] Ground truth [1] Our result: Ground truth and
localization map our predicted regions
Ground truth: Blue -- Soft Exudates Red -- Hemorrhages
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Results for object localization on diaretDB1 — example images

Test image [1] Ground truth [1] Our result: Ground truth and
localization map our predicted regions
Ground truth: Blue -- Soft Exudates Red -- Hemorrhages

Our result: Green -- Our predicted lesion regions
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Results for object localization on diaretDB1 — example images

Test image [1] Ground truth [1] Our result: Ground truth and
localization map our predicted regions
Ground truth: Blue -- Soft Exudates Red -- Hemorrhages

Our result: Green -- Our predicted lesion regions
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Lesion detection - performance at image level

Image level sensitivity [%]

Method Type. H° HE™ SE° RSD’ Image level sensitivity
Zhou et al.l7] S. 94.4 _ i » Detecting at least one lesion of type T on an image is
Liu et al.[8] S ; 330 83.0 3 counted as a True Positive.
Haloi et al.[9] S. 96.5 : } » Alesion is detected if either one pixel or 50% of its
Mane et al.[10] S ) ) ) 96.4 pixels are covered by the prediction map.
Ours (50% Overlap) ~ W.S. 972 933 81.8 50 > Sensitivity = pono Zmde S on B Lo tr e

Number of total images showing lesion type T

Ours (OnePixel Overlap) W.S. 97.2 100 909 50
“ H, HE, SE, RSD: Hemorrhages, Hard Exudates, Soft-

Exudates ar.ld Red Small Dots. _ Binary image classification (healthy vs. unhealthy)
S.= supervised, W.S. = weakly-supervised yields 93.6% sensitivity and 97.6% specificity on

DiaretDB1 dataset with AUC of 0.954.
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Performance at lesion level

Lesion level sensitivity [%]

Type Method Hemorrhages ‘ Hard Exudates ‘ Soft Exudates RSD
SE % FPs/1 SE % FPs/1 SE % FPs/1 SE % FPs/
W.S. Quellec eral. [11] 71 10 80 10 90 10 61 10
S. Dai er al. [12] - - - - : - 29 20.30
W.S. Ours (50% Overlap) 72 2.25 47 1.9 71 [.45 21 2.0
W.S. Ours (OnePixel Overlap) 91 1.5 87 1.5 89 1.5 52 1.5
Type: S.= supervised, W.S. = weakly-supervised FROC curves for all four lesion types
SE: sensitivity 08
FPs/I: talse positives per image 07
Lesion level sensitivity 06| oz
» Detecting at least one pixel (OnePixel Overlap) or 50% of the pixels .05
(50% Overlap) of a lesion of type T is counted as a True Positive. = R R emmmeett
» A False Positive (FP) is a predicted region not containing any lesion § oa iy
type or a predicted region with mlOU<0.5. '
> Sensitivity = Number of detected re:gions of le.sion typeT v -7 vovat "::::fEET;‘:;:‘e:
Number of total regions of lesion typeT 0.1 Hemorrhages
I - *++1 Red Small Dots
) 05 1.0 15 2.0 25

Jan Kohler | Bosch Center for Artificial Intelligence (BCAI) | 20/Sept/2017
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Summary

» Given only image level labels we could identify lesion regions which are important for the CNN for
classification of retinal images.

» The network is trained for binary classification and classification accuracy is high, though introducing
a GAP layer, with sensitivity of 93,6% and specificity of 97.6% on the DiaretDB1 test data.

» The sensitivity for detecting the lesion regions is beating or competitive to supervised methods.

» Red small dots are hard to localize. A reason might be the small resolution of the feature maps which
are the basis of the localization map.

Jan Kohler | Bosch Center for Artificial Intelligence (BCAI) | 20/Sept/2017
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Thank you

Questions?

Remarks?

Contact: Jan.Koehler@de.bosch.com
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