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Interpolation between observations ([3]) is
employed to interpolate statistics of HMMs
from different HMM sets:

0.3 — 0.7 18.18 0 0 81.82

0.7 — 0.3 83.33 0 0 16.67

The face of the agent is modeled by Active Appearance Models:
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A(x): mean texture
Face texture A(x) = A(x) + D i—1 AiA; A;: eigentexture coefficients Synthesized #, 2 : interpolated mean covariance m.atrlx. Emotion classification rate when interpolating the  Interpolating the anger and happiness HMM sets.
Fusion —> Audio-Visual I‘-Illl\’/l ZI:\;I : adapted mean — covariance matrix of ith neutral and sadness HMM systems (% scores). (respective weights shown under each image).
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