Deep Joint Discriminative Learning for Vehicle Re-identification and Retrieval

Yuqi Li, Yanghao Li, Hongfei Yan, Jiaying Liu Peking University

2017.09.18

Deep Joint Discriminative Learning for Vehicle Re-identification and Retrieval

Outline

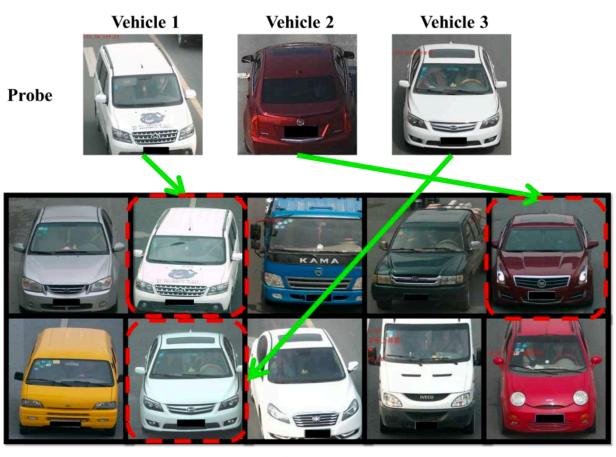
Background
Deep Joint Discriminative Learning
Experimental Results
Conclusion

Deep Joint Discriminative Learning for Vehicle Re-identification and Retrieval

Outline

Background

Deep Joint Discriminative Learning


Experimental Results

Conclusion

004 Background Yanghao Li

Vehicle search and re-identification

Gallery

Vehicle search and re-identification

- Practical applications in video surveillance systems
- Challenge

005

- License plate is not clear
 - Low-resolution
 - Occluded or removed
- → Vehicle ReID based on **appearance information**

Background Yanghao Li

Vehicle search and re-identification

■ VehicleID dataset

006

- Labeled in identity level
- Remove license plate

- Most identification works focus on face or person
 - Face recognition
 - Person re-identification
- Target: learn discriminative representations
 - State-of-art → Deep CNN based
 - DeepID [Sun et. al, 2014]
 - Directly classify identities $(\sim 1 \text{ w})$
 - DeepID2 [Sun et. al, 2014]
 - Pairwise verification loss
 - Triplet loss [Schroff et. al, 2015, Ding et. al 2015]
 - Triplet relationship between positive and negative pairs

008 Background Yanghao Li

- Difference of vehicle identification
 - Previous works focus on model classification
 - Recognize models instead of identities
 - Vehicles of same model \rightarrow similar visual appearance
 - Capture special marks

- Difference of vehicle identification
 - Previous works focus on model classification
 - Recognize model instead of identities
 - Vehicles of same model \rightarrow similar visual appearance
 - Capture special marks
- Large scale vehicle identification dataset
 - VehicleID [Liu et al. 2016]
 - Facilitate deep learning models

- Difference of vehicle identification
 - Previous works focus on model classification
 - Recognize model instead of identities
 - Vehicles of same model \rightarrow similar visual appearance
 - Capture special marks
- Large scale vehicle identification dataset
 - VehicleID [Liu et al. 2016]
 - Facilitate deep learning models
- Deep Joint Discriminative Learning (DJDL) model
 - A unified framework to extract discriminative features

Deep Joint Discriminative Learning for Vehicle Re-identification and Retrieval

Outline

Background

Deep Joint Discriminative Learning

Experimental Results
Conclusion

Triplet

Triplet Loss

 \triangle

Architecture Overview

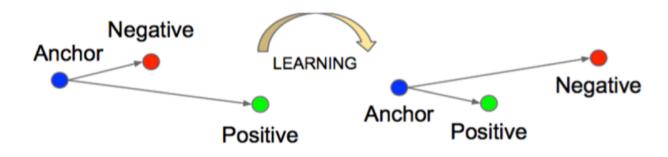
- Unified framework for four tasks
 - Shared base convolution network
 - A common CNN pretrained on ImageNet
 - Classification tasks
 - Identification
 - Attribute recognition
 - Verification subnetwork
 - Two images
 - Triplet subnetwork
 - Three images

- Identification subnetwork
 - Each input image → Identity label
 - Conventional recognition task
 - Softmax + cross-entropy loss

$$L_{identi}(f_i) = -\sum_{j=1}^n p_j \log \hat{p_j}$$
 target label Predicted probability

- Attribute recognition subnetwork
 - Jointly recognize vehicle attributes
 - Such as color and vehicle model

$$L_{attri}(f_i) = -\sum_{k=1}^{n_{attri}} \sum_{j=1}^{n_k} a_j^k \log \hat{a_j^k}$$


- Verification subnetwork
 - Pair-wise siamese network
 - Use Euclidean distance after normalization
 - Distance \rightarrow small if same identity
 - Distance → large if different identity

$$L_{verif}(f_i, f_j) = \begin{cases} \frac{1}{2} \|f_i - f_j\|_2^2, & v_i == v_j, \\ \frac{1}{2} max(0, \alpha - \|f_i - f_j\|_2)^2, & v_i \neq v_j, \end{cases}$$
Margin parameter enforce distance > \alpha

- Triplet subnetwork
 - Anchor + positive + negative

$$L_{triplet}(f_i, f_j, f_k) = max(0, ||f_i - f_j||_2^2 - ||f_i - f_k||_2^2 + \beta)$$

Margin parameter

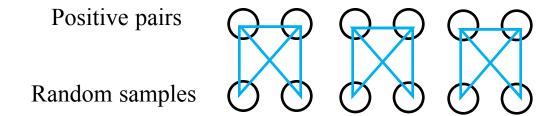
Objective function

$$L = L_{identi} + L_{attri} + L_{verif} + L_{triplet}$$

- SGD optimization
- Jointly learning in a single batch
 - Specific batch composition design

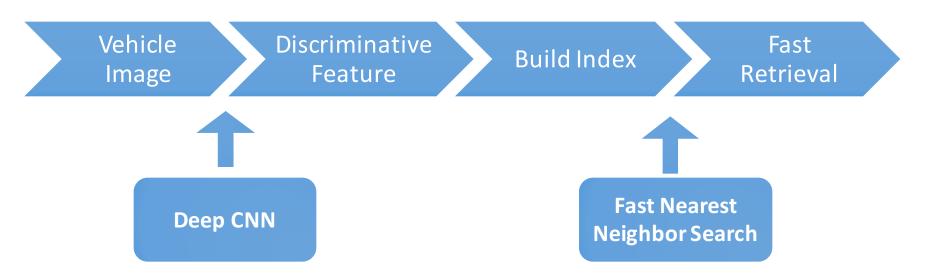
- Batch composition design
 - Satisfy four tasks at the same time
 - Half positive pairs + half random samples

Positive pairs O-O O-O


Random samples O O O O O

- Batch composition design
 - Satisfy four tasks at the same time
 - Verification samples

Positive pairs


Random samples

- Batch composition design
 - Satisfy four tasks at the same time
 - Triplet samples

- \blacksquare Discriminative features \rightarrow Build index
 - Vehicle Retrieval
 - Nearest neighbor search

Marius Muja and David G Lowe, "Fast approximate nearest neighbors with automatic algorithm configuration," in VISAPP, 2009.

Deep Joint Discriminative Learning for Vehicle Re-identification and Retrieval

Outline

Background

Deep Joint Discriminative Learning

Experimental Results

Conclusion

Experimental settings

- VehicleID Dataset
 - 221763 images of 26267 vehicles
 - Three test sets
 - Small, medium, large size
- Two tasks
 - Vehicle retrieval
 - Vehicle re-identification

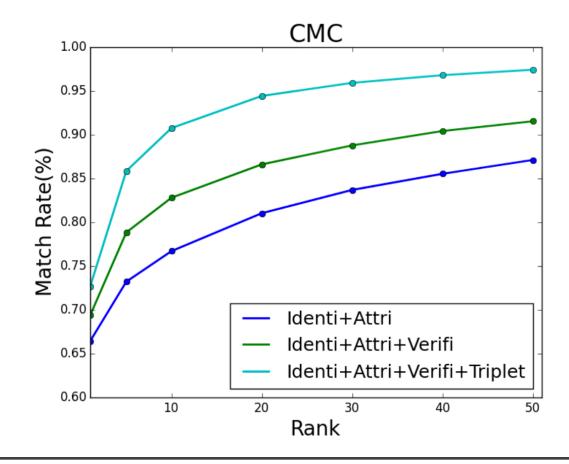
Experimental settings

- Implementation Details
 - MXNet platform
 - Base convolutional network
 - Inception-BN
 - Augmentation
 - Random crop
 - Random flip
 - Batch size: 64
 - Margin parameters α , β as 0.9

Vehicle Retrieval

- Evaluation protocol
 - Mean average precision (MAP)
- Ablation results

Method	Small	Medium	Large
Identi	0.712	0.684	0.670
Identi+Attri	0.718	0.686	0.672
Identi+Attri+Verifi	0.731	0.705	0.689
Identi+Attri+Verifi+Triplet	0.786	0.747	0.720


Vehicle Retrieval

■ Compare with state-of-art

Method	Small	Medium	Large
VGG+CCL [1]	0.492	0.448	0.386
Mixed Diff+CCL [1]	0.546	0.481	0.455
HDC + Contrastive [16]	0.655	0.631	0.575
Identi+Attri+Verifi+Triplet	0.786	0.747	0.720

- Evaluation protocols
 - CMC curve

Vehicle Re-identification

- Evaluation protocols
 - Top1 and Top 5 match rates

Protocol	Small	Medium	Large
	0.436	0.370	0.329
	0.490	0.428	0.382
Top 1	0.670	0.667	0.651
	0.689	0.687	0.661
	0.723	0.708	0.680
	0.642	0.571	0.533
	0.735	0.668	0.616
Top 5	0.735	0.729	0.716
	0.781	0.765	0.737
	0.857	0.818	0.789
	Top 1	0.436 0.490 Top 1 0.670 0.689 0.723 0.642 0.735 Top 5 0.735 0.781	0.436 0.370 0.490 0.428 Top 1 0.670 0.667 0.689 0.687 0.723 0.708 0.642 0.571 0.735 0.668 Top 5 0.735 0.729 0.781 0.765

Conclusion

- A novel Deep Joint Discriminative Learning model
 - For vehicle re-identification and retrieval
 - A unified framework by incorporating four tasks
 - Different properties → benefit each other
 - Jointly optimize
 - specific designed batch composition
- Experiments validate the effectiveness of DJDL model
 - State-of-the-art results on two tasks

lyttonhao@pku.edu.cn

Project Page: http://www.icst.pku.edu.cn/struct/Projects/djdl.html

