

Localized Multi-kernel Discriminative Canonical Correlation Analysis for Video-based Person Re-Identification

Guangyi Chen, Jiwen Lu, Jianjiang Feng, Jie Zhou Tsinghua University, China

Personal Introduction

Guangyi Chen

- ✓ Pattern Recognition and Intelligent Systems, Department of Automation, Tsinghua University
- ✓ 1st Year of Ph.D. Candidate
- ✓ Supervised by Professor *Jie Zhou* and Associate Professor *Jiwen Lu*
- ✓ Research Interests: Person Re-identification, Metric Learning.

Person Re-Identification

Person re-identification (person re-id) aims to matching the same individuals across multi-cameras without overlapping.

Challenge

Low resolutionOcclusionBackground

IlluminationView pointPose

Video Based VS Image Based

Video

Temporal InformationComplementary cuesEliminate noise

Pedestrian Video Representation

Temporal Pooling: Segment Selecting: Recurrent Convolutional Network for Person Re-identification by Video-based Person Re-Identification[1] Video Ranking[2] Temporal Pooling & Segment Selecting Ident. Cost Ident. Cost

[1]McLaughlin N et.al, Recurrent convolutional network for video-based person reidentification. CVPR, 2016 [2] Wang T, et al. Person re-identification by video ranking. ECCV, 2014

i-VisionGroup@Tsinghua

Person Video Manifold

Person video lies on a manifold which can't be represented by an average pooling.

Video Modeling by SPD Matrix

By calculating kernel matrices with features of frames, we represent video as a SPD matrix.

$$S(i,j) = \langle \phi(f_i), \phi(f_j) \rangle = \kappa(f_i, f_j)$$

Metric of SPDs

How to calculate the distance between two SPD matrices?

Riemannian kernel function

 $\kappa_{LOG}(S_1, S_2) = tr[log(S_1) \cdot log(S_2)]$

Select Appreciate Kernels

Kernel is sensitive to parameters and types

Localized Multi-Kernel CCA

Our framework is an optimization problem as follows:

$$\min \sum_{i,j} w_{ij} \| f_x(X_i) - g_y(Y_j) \|_F^2$$

s.t. $\sum_i \| f_x(X_i) \|_F^2 = 1$, $\sum_j \| g_y(Y_j) \|_F^2 = 1$

By the Riemannian kernels, we project the SPD from Riemannian manifold to Euclidean space

$$\min \sum_{i,j} w_{ij} \left\| \alpha^T K_x^{(i)} - \beta^T K_y^{(j)} \right\|_F^2$$

s.t. $\alpha^T \alpha = I, \beta^T \beta = I$

Localized Multi-Kernel CCA

With the multi-kernel learning algorithm, we combine multi-SPDs induced by multi-kernels

$$\kappa = \sum_{m=1}^{M} \eta_m \kappa_m$$

All samples share same weights

We learn the localized weights with a softmax function

$$\eta_m \left(K_m^{(i)} \right) = \frac{\exp(v_m^T K_m^{(i)} + v_{m0})}{\sum_{m=1}^M \exp(v_m^T K_m^{(i)} + v_{m0})}$$

$$K(i,j) = \sum_{m=1}^{M} \eta_m \left(K_m^{(i)} \right) K_m(i,j) \eta_m (K_m^{(j)})$$

Two Layer Localized Multi-Kernel CCA

In addition, we design a two layer framework to learn representation kernel and Riemannian metric kernel simultaneously.

Extend to multiple cameras

We extend our method to multiple cameras by learning view-aware metric.

$$\min \sum_{i,j,c_1,c_2(c_1 \neq c_2)} w_{ij} \left\| W_{c_1}^T K_{c_1}^{(i)} - W_{c_2}^T K_{c_2}^{(j)} \right\|_F^2$$

s.t. $W_c^T W_c = I$, c=1,2,...,C

Datasets

We evaluate our method on three open dataset.

Datasets	identities	cameras	images	setting	partition
PRID 2011	178	2	40033	Random partition	89 for train 89 for test
iLIDS-VID	300	2	42495	Random partition	150 for train 150 for test
MARS	1261	6	1191003	Fixed partition	625 for train 634 for test

Evaluation on ILIDS-VID

Method	Rank=1	Rank=5	Rank=10	Rank=20
DVDL	25.9	48.2	57.3	68.9
SDALF+DVR	41.3	63.5	72.7	83.1
TDL	56.7	80.0	87.6	93.6
McLaughlin	58.0	84.0	91.0	96.0
STFV3D+KISSME	44.3	71.7	83.7	91.7
DCCA(mean)	60.3	80.6	87.3	90.9
GMKDCCA	70.6	90.1	93.8	97.3
LMKDCCA	73.3	90.5	94.7	98.1

Evaluation on PRID 2011

Method	Rank=1	Rank=5	Rank=10	Rank=20
DVDL	40.6	69.7	77.8	85.6
SDALF+DVR	48.3	74.9	87.3	94.4
TDL	56.3	87.6	95.6	98.3
McLaughlin	70.0	90.0	95.0	97.0
STFV3D+KISSME	64.1	87.3	89.9	92.0
DCCA(mean)	76.7	92.8	95.9	98.0
GMKDCCA	83.0	96.1	99.4	99.8
LMKDCCA	86.4	97.5	99.6	100

Evaluation on MARS

Method	Rank=1	Rank=5	Rank=20	Мар
IDE + Kissme	65.0	81.1	88.9	45.6
IDE + XQDA	65.3	82.0	89.0	47.6
IDE+ LMKDCCA	69.2	84.0	91.2	50.6

Use the deep network to mine relationship of kernels

Exploit the temporal information more effectively

