360-degree Video Stitching for Dual-fisheye Lens Cameras based on Rigid Moving Least Squares

Tuan Ho^{*†}, Ioannis Schizas^{*}, K. R. Rao^{*}, Madhukar Budagavi[†]

UNIVERSITY OF

LINGT

* Electrical Engineering Dept., University of Texas–Arlington, TX USA † Samsung Research America, Richardson, TX USA

COLLEGE OF ENGINEERING

Introduction

- 360-degree imaging: the process of taking multiple photographs and stitching them together to create a 360x180-degree image.
- Imaging systems:
 - □ Catadioptric: using lens+mirror → no stitching seams but limited field of view (cannot produce 360x180-degree images).
 - Polydioptric: using multiple wide-view lenses in a same rig. Having seam artifact but getting much improved by hardware/algorithm.

Columbia Univ.'s catadioptric camera

GoPro's Odyssey 360 rig (16 cameras)

Facebook Surround 360 rig (17 cameras)

Motivation

- Polydioptric cameras become more and more popular in 360-degree imaging and video.
- But most professional polydioptric optical systems are:
 - Bulky
 - □ Very expensive (ranging \$15,000 ~ \$30,000 for a complete system) → not for the masses
- Dual-fisheye camera:
 - Use two fisheye lenses
 - Compact
 - □ Affordable (less than \$400/each)

Dual-fisheye camera for 360-degree video:

- Affordable optics and simpler hardware.
- Complexity shifted to stitching algorithm.

Challenges

- Little overlap between two fisheye images taken by the dual-fisheye lens (each lens of the Gear 360 camera has 195-degree field of view).
- Parallax introduced by the two fisheye lenses.

Example image taken by the dual-fisheye lens camera (Samsung Gear 360)

Related Work

 A system to produce stitched 360x180-degree images for dual-fisheye lens camera was proposed by T. Ho & M. Budagavi [7].

Images taken by dual-fisheye lens camera (Samsung Gear 360)

360x180-degree image stitched by [7]

[7] T. Ho and M. Budagavi, "Dual-fisheye lens stitching for 360-degree imaging," in Proc. of the 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), 2017.

Dual-fisheye Stitching Discontinuity

360x180-degree image stitched by [7]

Discontinuity

Discontinuity in the stitching regions due to parallax

Dual-fisheye Stitching Discontinuity Cause

- The affine warping in [7] aims to minimize the discontinuity globally.
- Parallax artifacts stacked up in the dualfisheye lens system because:
 - □ The number of lenses is minimum (2 lenses)
 - The natural distortion of the wide field of view (195 degrees) fisheye lenses, esp. along the circumference of the circular fisheye images
- More parallax at the stitching boundaries.

Fisheye 360-degree images. Severe distortion can be found along their circumferences.

Discontinuity in the stitching regions due to parallax [7]

Dual-fisheye Stitching Parallax Artifact

Study on parallax artifact of dual-fisheye lenses (with Samsung Gear 360 cameras)

Dual-fisheye Stitching Parallax Artifact

- Overlapped regions after unwarping the input fisheye images are shown below.
- The green and yellow points are same points viewed by the two fisheye lenses.
 Overlapping regions

fov: field of view

Dual-fisheye Stitching Parallax Solution

- To reduce the parallax impact, a local minimization approach is preferred.
- To this end, we introduce a rigid moving least squaresbased approach for better stitching quality.
- **Goal**: deform the image on the right so that
 - In the overlapping regions: the yellow points become green points, thus aligning the two images
 - Else where: minimal changes.

The Proposed Stitching System

What's new?

- Using rigid moving least squares instead of linear least square (affine matrix) to produce much better stitched images.
- Supporting 360-degree video.

Rigid Moving Least Squares

For every point in the image, we solve for a transformation matrix M that minimizes the weighted least squares:

$$\underset{M}{\operatorname{argmin}} \sum_{i} w_{i} \left\| \hat{p}_{i} M - \hat{q}_{i} \right\|^{2}$$

p (green points) and q (yellow points): the control points in the overlapping regions of the original and deformed images respectively. $\hat{p}_i = v - p^*$ and $\hat{q}_i = q^*$ are derived from each point v in the image on the right and the weighted centroids of p^* and q^* .

Rigid Moving Least Squares (MLS)

The weights w_i are calculated as follows:

$$w_i = \frac{1}{|p_i - v|^{2\alpha}}$$

The weights w_i :

- proportional to the distance between the image point υ and the control point p_i .
- gets smaller when υ moves further away from p_i (i.e. the least squares minimization depends on the point of evaluation, thus the name moving least squares). When $\upsilon\neq p_i$, f interpolates $f(\upsilon)=q_i$.
- in other words, high-valued weights inside the overlapping regions and small-valued weights elsewhere.

□ The rigid transformation is preferred to the affine and similarity transformation [10].

[10] S. Schaefer, T. McPhail, and J. Warren, "Image deformation using moving least squares," in Proc. of ACM SIGGRAPH '06, 2006.

Rigid Moving Least Squares (MLS)

- Since the two lenses are fixed into the camera system, the rigid MLS-based optimization can be done offline and produce the interpolation grids.
- The grids are then used to deform the image by 2-D interpolation.

(a)

(b)

Unwarped images

(c) Deformed version of image (b) by rigid MLS, to align it with (a)

Refined Alignment

- A linear least squares is applied on top of the MLS deformation to further align the images, i.e. normalized cross-correlation-based matching [7].
- This refined alignment works adaptively to the scene, i.e. to align objects with arbitrary depth to the cameras.

The person sitting very close to the <u>boundary</u> of the dual-fisheye lens camera. (a) With MLS deformation. (b) With MLS deformation + refined alignment.

Still-image Stitching Results

(a) Image stitched by the proposed approach

(b) Image stitched by [7]

(a1)

(b1)

(a2)

(b3)

Still-image Stitching Results (This Work)

360-degree Video

- Goal: maintain smooth transition between stitched frames in the 360-degree video.
- □ Visual glitch is not comfortable for viewer.
- The stitching glitch caused by the abrupt change in the warping matrices among adjacent frames.
- A temporal control is added to adjust the template matching in the refined alignment process to minimize glitches.

Temporal Control for Refined Alignment

- The refined alignment [7]
 - is a patch-based matching based on cross-correlation
 - works adaptively to the scene
 - may produce different warping matrices for each frames
- Could cause glitches if the warping matrices largely differentiate among adjacent stitched frames.

(a) Matching process in the refined alignment [7]. Scores are assigned for each stitching boundaries. (b) With the refined alignment. (c) Without the refined alignment.

Temporal Control for Refined Alignment

Temporal Control

The proposed temporal control minimizes the glitches caused by different warping matrices among adjacent frames.

Objects in the stitching boundary. <u>Top row</u>: with temporal control (no glitch). Bottom row: without temporal control (visible glitches).

Conclusion

- A system for stitching 360-degree video frames generated by the dual-fisheye lens cameras is presented.
- The proposed system can produce better stitching quality frames and videos with indiscernible glitch, comparing to the state-of-the-art work.
- □ The proposed stitcher is written in C++ with OpenCV.
- It takes around 500ms to stitch one 3840x1920 360degree frame on a laptop with Intel core i7 1.8 GHz, 8GB RAM, 256GB SSD. (excluding the one-time configuration setup, such as reading MLS deform 2-D interpolation grids, etc., in prior to the stitching process)

Demo

- Demo time: 360-degree video stitched by the proposed method and the previous work [7].
- View in normal mode: VideoLAN VLC is used to display the videos.
- View in VR mode: the GoPro VR Player (free) is used to play the 360-degree videos.
- The demo can be found in the supplement materials at: <u>https://sigport.org/documents/360-degree-video-stitching-dual-fisheye-lens-cameras-based-rigid-moving-least-squares</u>

References

[1] "GoPro Odyssey," https://gopro.com/odyssey, [Retrieved August, 2016].

[2] "Facebook Surround360," https://facebook360.fb.com/facebook-surround-360, [Retrieved August,2016].

[3] "Google Cardboard," https://vr.google.com/cardboard, [Retrieved August, 2016].

[4] "Samsung GearVR," www.samsung.com/us/gearvr, [Retrieved August, 2016].

[5] "Ricoh Theta," https://theta360.com, [RetrievedAugust, 2016].

[6] "LG 360 Cam," http://www.lg.com/us/mobile-accessories/lg-LGR105.AVRZTS-360cam, [Retrieved August, 2016].

[7] T. Ho and M. Budagavi, "Dual-fisheye lens stitching for 360-degree imaging," in Proc. of the 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'17), 2017.

[8] M. Brown and D.G. Lowe, "Automatic panoramic image stitching using invariant features," International Journal of Computer Vision, vol. 74, pp. 59–73, August 2007.

[9] R. Szeliski, Computer Vision: Algorithms and Applications, Springer, London, UK, 1st edition, 2011.

[10] S. Schaefer, T. McPhail, and J. Warren, "Image deformation using moving least squares," in Proc. of ACM SIGGRAPH '06, 2006.

Thank You!