

2017 IEEE International Conference on Image Processing

SSPP-DAN: Deep Domain Adaptation Network for Face Recognition with Single Sample Per Person

Sungeun Hong, Woobin Im, Jongbin Ryu, Hyun S. Yang

AIM Lab, KAIST, South Korea

Contents

Motivation & Problem Definition

- Single sample per person (SSPP)
- Challenges in real-world face recognition

Proposed method

- Domain adaptation
- Face synthesis

Experiments

- New heterogeneous dataset
- LFW for SSPP

Motivation & Problem Definition

SSPP face recognition

Face recognition using Single Sample Per Person (SSPP)

- Identify or verify identities using only one single gallery image
- Related to the recently attracted one-shot learning

Sample images of the AR database

SSPP face recognition

Limitations of existing SSPP datasets

- Lab controlled environment
- Consistent shooting environment

Lu, Jiwen, Yap-Peng Tan, and Gang Wang. "Discriminative multimanifold analysis for face recognition from a single training sample per person." *IEEE transactions on pattern analysis and machine intelligence* 35.1 (2013): 39-51.

Real-world SSPP Face recognition

Registration (Gallery)

Gallery A stable image like clear frontal mugshot e.g., ID card or e-passport Identification (**Probe**)

Probe

Unstable images including non-trivial variations e.g., surveillance camera, web images

> Variations: <u>camera sensor, blur,</u> <u>noise, pose, illumination</u>

Real-world SSPP Face recognition

Challenges

1. Heterogeneity of the shooting environments

- Gallery: stable environment
- Probe: highly unstable environment

2. Shortage of training samples

Only one training sample per person is available

Proposed method

Real-world SSPP Face recognition

Challenges

1. Heterogeneity of the shooting environments

- Gallery: stable environment
- Probe: highly unstable environment

Real-world SSPP Face recognition

Challenges

1. Heterogeneity of the shooting environments

- Gallery: stable environment
- Probe: highly unstable environment

 Adjust a model to a different <u>target domain distribution</u> starting from the <u>source domain knowledge</u>

Source domain

With labels

Target domain

consumer images

Without labels

 Adjust a model to a different <u>target domain distribution</u> starting from the <u>source domain knowledge</u>

Model

Purpose	Train		Test
Domain	Source	Target	Target
Image condition	Stable	Unstable	Unstable
Label	0	Х	-

- Basic assumptions of DA
 - samples are <u>abundant</u> in each domain
 - sample distribution of each domain is related but different

Face synthesis

Generate virtual samples for lack of samples.

Image synthesis

Image synthesis > distribution of samples

Image synthesis >> distribution of samples >> Success of DA

Real-world SSPP Face recognition

Challenges

- 1. Heterogeneity of the shooting environments
 - Gallery: stable environment
 - Probe: highly unstable environment
- 2. Shortage of training samples
 - Only one training sample per person is available

SSPP-DAN: Domain Adaptation Network for Single Sample Per Person

1. Domain adaptation network

 From stable face domain (source) to unstable face domain (target)

2. Face synthesis

· Generate virtual samples

- 1. Domain adaptation network with domain-adversarial training
 - Feature learning
 - Domain adaptation Jointly
 - Classifier learning -

$$\begin{split} L_C &= \sum_{i \in S} L_C^i & \text{when update } \theta_C \\ L_D &= \sum_{i \in S \cup T} L_D^i & \text{when update } \theta_D \\ L_F &= \sum_{i \in S} L_C^i - \lambda \sum_{i \in S \cup T} L_D^i & \text{when update } \theta_F \end{split}$$

Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." International Conference on Machine Learning. 2015. 27

1) Landmark detection

- Supervised descent method
- 2) $2D \rightarrow 3D$ mapping
- 3) Pose estimation
- 4) Image synthesis
 - (yaw: -80°~+80°, pitch: -10°~40°)

2. Face synthesis

Generate virtual samples

Domain Adaptation

Data Feed

- Source (with label): frontal images + synthesized images
- Target (without label): surveillance camera images

Experiments

Heterogeneous dataset

(a) Shooting condition for the source (left) and target (center and right)

Target

(b) Face regions from the source (leftmost) and target (the others)

Table 1: Dataset specification

Domain	Source	Target
Set	webcam	surveillance
Subjects	30	30
Samples	30	15,900
Pose	frontal	various
Condition	stable	unstable
		(blur, noise, illumination)

Table 2: Recognition rates (%) for different models and different training sets of the EK-LFH

	Model	Training set	Accuracy	only using
Lower bound	Source only	S S I S	39.22	Tace synthesis
	DAN	$\frac{S + S_v}{S + T}$	31.11	only using domain adaptation
	SSPP-DAN	$S + S_v + T$	58.53	
Upper bound	Train on target	T ₁	88.31	
	S: Labeled webcar S _v : Virtual set from	n T: Unlabeled su n S T ₁ : Labeled su	urveillance urveillance	
	*			

Table 2: Recognition rates (%) for different models and different training sets of the EK-LFH

Model	Training set	Accuracy	
Source only	S	39.22	
	$\mathrm{S}+\mathrm{S_v}$	37.15	
DAN	S + T	31.11	
SSPP-DAN	$S + S_v + T$	58.53	
Semi DAN	$S + T + T_1$	67.28	S
Semi SSPP-DAN	$S+S_v+T+T_l\\$	72.08	p
Train on target	T ₁	88.31	С
S: Labeled webcam T: Unlabeled surveillance			
S_v : Virtual set from S T_1 : Labeled surveillance			

Semi: 3 samples per person from target domain are revealed

ΚΔΙSΤ

Labeled Faces in the Wild (LFW)

Source

Target

- Dataset summary
 - Rearranged LFW-A for SSPP face recognition
 - Gallery: 50 images for 50 people
 - Generic set: 108 subjects

Labeled Faces in the Wild (LFW)

Source

Target

- LFW for SSPP protocol
 - Gallery: 50 images for 50 people
 - Generic set: 108 subjects

Method	Accuracy	Method	Accuracy	
DMMA [1]	17.8	RPR [20]	33.1	
AGL 6	19.2	DeepID [21]	ר 70.7	
SRC ⁴	20.4	JCR-ACF [19]	86.0	Deep
ESRC [7]	27.3	VGG-Face [8]	96.43	learning
LGR [22]	30.4	Ours	97.91	

Summary

- 1. Heterogeneity of the shooting environments
- 2. Shortage of training samples

Summary

- Heterogeneity of the shooting environments
 Domain adaptation network
- 2. Shortage of training samples

Face synthesis

Questions?

Appendix

Domain Adversarial Network

(Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." ICML 2015.)

Unified framework using adversarial training

Domain classifier

Domain Adversarial Network

(Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." ICML 2015.)

Unified framework using adversarial training

Domain classifier

Domain Adaptation

Adversarial Training

- F is trained to fool D so that D cannot determine domain of data.
- Gradient Reversal Layer (GRL)

Forward: identity operation $R_{\lambda}(\mathbf{x}) = \mathbf{x}$

>backward: multiply by
$$-\lambda \quad \frac{dR_{\lambda}}{d\mathbf{x}} = -\lambda \mathbf{I}$$

Loss for training

 $L_{C} = \sum_{i \in S} L_{C}^{i} \qquad \text{when update } \theta_{C}$ $L_{D} = \sum_{i \in S \cup T} L_{D}^{i} \qquad \text{when update } \theta_{D}$ $L_{F} = \sum_{i \in S} L_{C}^{i} - \lambda \sum_{i \in S \cup T} L_{D}^{i} \qquad \text{when update } \theta_{F}$

 L_{C}^{i} and L_{D}^{i} : loss of *C* and *D*, and $\theta_{D}, \theta_{F}, \theta_{C}$: parameters of *D*, *F*, *C*

