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Abstract
• Bats can serve as inspiration for flapping-wing air vehicles.
• Understanding bat flight requires detailed kinematics data.
• We use many low-cost,low frame rate cameras which results in

nonlinear, large-baseline motions in image space.
• We apply Gaussian Process Dynamic Modeling (GPDM) to

learn a low dimensional model of bat flight.
• This paper presents the first nonlinear dimensionality re-

duction of bat flight.

Introduction
• Bats are very agile, stable, and efficient which makes them ex-

cellent models for air vehicle design.
• Their flight characteristics are due to an articulated skeleton

and deformable wing membrane which are difficult to study
via imaging due to frequent incidents of self-occlusion.

• Occlusions can be avoided by using many low-cost/low-frame
rate cameras.

• The low frame rates result in large-baseline nonlinear motions
of points in the image which makes correspondence difficult.

• In [6], the authors bootstrap optical flow with a Square Root
Unscented Kalman Filter to perform tracking which works well
when videos are captured at frame rates >250fps.

• Our experiments are conducted with much lower frame rate
cameras (120fps), so a better motion model is needed.

• We use Gaussian Process Dynamic Models (GPDM) presented
in [8-10] to learn a low-dimensional nonlinear manifold to rep-
resent bat flight.

• We learn a dynamic model of bat flight which can be used
as a more accurate motion prior than random walk.

• This is the first nonlinear dimensionality reduction of bat
flight.

Experimental Facility

Figure 1: Flight Tunnel. 28 GoPro Hero 3+ Cameras running at 720p 120fps

Gaussian Process Dynamic Models
Given a sequence of data Y := {y1,y2, ... ,yK} which is assumed to be zero
mean along each dimension where yk ∈ RN ∀k ∈ [1, 2, ..., K], we want to
determine the model

xk = f (xk−1,A) + nx,k yk = g(xk,B) + ny,k (1)

where, xk ∈ RD is a D-dimensional latent space which supports the dynam-
ics, f is a nonlinear dynamic model, g projects latent states into state space,
and A and B are matrices of linear parameters. We assume that

f (x,A) =
∑
i

aiφi(x), g(x,B) =
∑
j

bjψj(x), (2)

where A :=
[
a1,a2, . . .

]
and B :=

[
b1, b2, . . .

]
are matrices of scaling param-

eters and φ(x) and ψ(x) are scalar output functions.
Authors in [8-10] formulate the joint probability of the latent variables X,

collected data Y, hyper-parameters α and β, and a weighting matrix W as

(3)p(Y,X,α,β,W) = p(Y|X,β,W)p(X|α)p(α)p(β)p(W).

The first term is obtained by placing a Gaussian prior on the columns of B and
marginalizing g. This eliminates the dependency of the model on the linear pa-
rameters, and only hyper-parameters must be identified. The marginalization
can be done in closed form [15] to obtain

(4)p(Y|X,β,W) =
|W|K√

(2π)KN |Ky|N
exp

(
−1
2

trace
(
KyYW2YT

))
,

where W := diag(
[
w1, w2, ...wN

]
) serves to weight Y so that dimensions

which are large in magnitude do not dominate the optimization. Additionally,
Ky is the covariance kernel with hyper-parameters β. This matrix is assem-
bled as

(5)
(
Ky
)
ij = β1exp

(
−β2

2
||xi − xj||2

)
+ β−13 δ(xi,xj).

The second term on the right hand side of equation 3 describes the dynamics
on the latent space. This probability is formulated as

p(X|α) =
∫
p(X|A,α)p(A|α)dA. (6)

Formulating the probability distribution in this manner removes the depen-
dency on the parameters in A with the smaller set of hyper-parameters con-
tained in α. Assuming a Gaussian prior on A, and assuming the process is
Markovian, this probability can also be computed in closed form as

(7)p(X|α) = p(x1)√
(2π)(K−1)D|Kx|D

exp
(
−1
2

trace
(
K−1x X2:KXT

2:K

))
.

Note that the weighting matrix is not required here because the latent vari-
ables are nondimensional. To define the covariance function we choose the
linear plus radial basis function kernel

(8)(Kx)ij = α1exp
(
−α2

2
||xi − xj||2

)
+ α3x

T
i xj + α−14 δ(xi,xj).

The only terms that remain in the joint distribution in equation 3 are the priors
on α and β. These serve to constrain the hyper-parameters and the weight
matrix W.

The joint probability distribution can be maximized by minimizing the neg-
ative log likelihood of the distribution

(9)

L =
D

2
ln||Kx||+

N

2
ln||Ky||−Kln|W|+1

2
trace(K−1x X2:KXT

2:K) +

1

2
xT1 x1 +

1

2
trace(K−1y YW2YT ) +

∑
j

ln(βj) +

1

2κ2
trace(W2) +

∑
j

lnαj.

There are many proposed methods for solving this equation: maximum a pos-
teriori (MAP) estimation, Balanced GPDM methods, manually specify hyper-
parameters, or two stage MAP. We use two stage MAP estimation where the
first stage optimizes the weight matrix W and the second stage optimizes X,
α, and β.

After optimizing, we propagate dynamics in the learned latent space using
the distribution

µX(x) = XT
outK

−1
x kX(x), (10)

σ2X(x) = kX(x,x)− kX(x)TK−1x kX(x). (11)

These dynamics can be used for simulation of trajectories in the latent space
and compared to those identified from the experimental data. Once trajectories
have been simulated in latent space, they can be projected into feature space
to generate simulated motions similar to the training data.

To project latent trajectories back into feature space, we can write

µY (x) = YTK−1y kY (x), (12)

σ2Y (x) = kY (x,x)− kY (x)TK−1y kY (x). (13)

Note that the projected trajectories will be zero mean due to the subtraction of
the mean applied to the original data.

Results

Latent Space Trajectories
• The identified manifolds are shown in Figure 2.
• All manifolds use the RBF plus linear kernel from Equation 8 on the dy-

namics and the RBF kernel in equation 5 for the mapping between latent
space and feature space.

• The subfigures show GPDMs identified with 2, 3, and 4 latent DOFs, re-
spectively.

• The blue points are the identified latent trajectories, red points are the sim-
ulated trajectories, and green points are HMC samples on the simulated
trajectories to represent the uncertainty in the manifold.

• Arrows indicate the direction of motion.
• Ideally, the manifold should appear to be cyclic and have little variation

between cycles.
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Figure 2: Left to Right: 2 DOF, 3DOF, and 4 DOF Latent Spaces

• To evaluate the consistency of the manifold we project it back into feature
space which is shown in Figure 3.

• The predictions (solid line) match the experimental data (dots) very closely.
• Note that the dark blue cycles for θ1 − θ3 are larger in amplitude than the

remaining cyan cycles.
• This behavior is likely the cause of the semi-periodic latent space trajecto-

ries discussed before.
• The extrapolated data (magenta) appears to be periodic repetitions of the

cyan portion of the experimental data.
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Figure 3: Feature Space Projection of Latent Trajectories.

Conclusions
• We use Gaussian Process Dynamic Models (GPDM) to learn both a latent

space representation for bat flight dynamics and a mapping from latent space
back to joint space.

• This is—to the authors’ knowledge—the first nonlinear dimensionality re-
duction of bat flapping flight.

• We have successfully identified a model which closely resembles the exper-
imental data provided and produces plausible synthesized motions.

• In the future, this model will be used as a motion prior to enable automated
tracking of feature points.
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