Gaussian Process Dynamic Modeling of Bat Flapping Flight

The First Nonlinear Dimensionality Reduction of Bat Flight
Matt Bender 1, Xu Yang ${ }^{2}$, Hui Chen ${ }^{2}$, Andrew Kurdila ${ }^{1}$, \& Rolf Müller ${ }^{1,3}$
${ }^{1}$ Department of Mechanical Engineering, Virginia Tech
${ }^{2}$ School of Information Science and Engineering, Shandong University
${ }^{3}$ Shandong University - Virginia Tech International Lab, Jinan, China
WVirginiaTech

Abstract

- Bats can serve as inspiration for flapping-wing air vehicles. - Understanding bat flight requires detailed kinematics data. - We use many low-cost, low frame rate cameras which results in nonlinear, large-baseline motions in image space. - We apply Gaussian Process Dynamic Modeling (GPDM) to learn a low dimensional model of bat flight.
- This paper presents the first nonlinear dimensionality reduction of bat flight.

Introduction

- Bats are very agile, stable, and efficient which makes them excellent models for air vehicle design.
-Their flight characteristics are due to an articulated skeleton and deformable wing membrane which are difficult to study via imaging due to frequent incidents of self-occlusion.
- Occlusions can be avoided by using many low-cost/low-frame rate cameras.
-The low frame rates result in large-baseline nonlinear motions of points in the image which makes correspondence difficult. - In [6], the authors bootstrap optical flow with a Square Root Unscented Kalman Filter to perform tracking which works well when videos are captured at frame rates >250fps.
- Our experiments are conducted with much lower frame rate cameras (120 fps), so a better motion model is needed.
- We use Gaussian Process Dynamic Models (GPDM) presented - We use Gaussian Process Dynamic Models (GPDM) presented
in $[\mathbf{8 - 1 0}]$ to learn a low-dimensional nonlinear manifold to repin $[8-10]$ to learn.
- We learn a dynamic model of bat flight which can be used as a more accurate motion prior than random walk.
- This is the first nonlinear dimensionality reduction of bat flight.

Experimental Facility

Gaussian Process Dynamic Models

Given a sequence of data $\mathbf{Y}:=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{K}\right\}$ which is assumed to be eroro
mean along each dimension where $\boldsymbol{y}_{k} \in \mathbb{R}^{N} \forall k \in[1,2$ mean along each dimension where $\boldsymbol{y}_{k} \in \mathbb{R}^{N} \quad \forall k \in[1,2, \ldots, K]$, we want to
determine the model
rex
where, $x_{k} \in \mathbb{R}^{D}$ is a D-dimensional latent space which supports the dynamics, f is a nonlinear dynamic model, g projects latent states into state space, and A and B are matrices of linear parameters. We assume that

$$
f(x, \mathbf{A})=\sum_{i} a_{i} \phi_{i}(\boldsymbol{x}), \quad g(x, \mathbf{B})=\sum_{i} b_{j} \psi_{j}(\boldsymbol{x})
$$

where $\mathbf{A}:=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots\right]$ and $\mathbf{B}:=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots\right]$ are m
eters and $\phi(\boldsymbol{x})$ and $\psi(\boldsymbol{x})$ are scalar output functions.
Aers ath $\phi(x), 10]$ (x) ac scalan output functions. Authors in $[8-10]$ formulate the joint probability of the latent variables X ,
collected data Y , hyper-parameters α and $\boldsymbol{\beta}$, and a weighting matrix W collected data \mathbf{Y}, hyper-parameters $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, and a weighting matrix \mathbf{W} as
$p(\mathbf{Y}, \mathbf{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{W})=p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\beta}, \mathbf{W}) p(\mathbf{X} \mid \boldsymbol{\alpha}) p(\boldsymbol{\alpha}) p(\boldsymbol{\beta}) p(\mathbf{W})$. The first term is obtained by placing a Gaussian prior on the columns of B and The first term is obtained by placing a Gaussian pror on the columns of B and
marginalizing g . This eliminates the dependency of the model on the linear pamarginaizing g. This eliminates the dependency of the model on the iniear pa-
rameters, and only hyper-parameters must be identified. The marginalization can be done in closed form [15] to obtain
$p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\beta}, \mathbf{W})=\frac{|\mathbf{W}|^{K}}{\sqrt{(2 \pi)^{K N}\left|\mathbf{K}_{y}\right|^{N}}} \exp \left(-\frac{1}{2} \operatorname{trace}\left(\mathbf{K}_{y} \mathbf{Y W}^{2} \mathbf{Y}^{T}\right)\right)$, (4) where $\mathbf{W}:=\operatorname{diag}\left(\left[w_{1}, w_{2}, \ldots w_{N}\right]\right)$ serves to weight \mathbf{Y} so that dimensions
which are large in magnitude do not dominate the optimization. Additionally which are large in magnitude do not dominate the optimization. Additionally,
\mathbf{K}_{y} is the covariance kernel with hyper-parameters β. This matrix is assem$\underset{\text { Kled as }}{\mathrm{K}_{y} \text { is }}$

$$
\left(\mathbf{K}_{y}\right)_{i j}=\beta_{1} \exp \left(-\frac{\beta_{2}}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}\right)+\beta_{3}^{-1} \delta\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) .
$$

The second term on the right hand side of equation 3 describes the dynamics on the latent space. This probability is formulated as

$$
\begin{equation*}
p(\mathbf{X} \mid \boldsymbol{\alpha})=\int p(\mathbf{X} \mid \mathbf{A}, \boldsymbol{\alpha}) p(\mathbf{A} \mid \boldsymbol{\alpha}) d \mathbf{A} . \tag{6}
\end{equation*}
$$

Formulating the probability distribution in this manner removes the dependency on the parameters in \mathbf{A} with the smaller set of hyper-parameters contained in α. Assuming a Gaussian prior on A, and assuming the process is arkovian, this probability can also be computed 1

$$
p(\mathbf{X} \mid \boldsymbol{\alpha})=\frac{p\left(\boldsymbol{x}_{1}\right)}{\sqrt{(2 \pi)^{(K-1) D}}\left|\mathbf{K}_{x}\right|^{D}} \exp \left(-\frac{1}{2} \operatorname{trace}\left(\mathbf{K}_{x}^{-1} \mathbf{X}_{2: K} \mathbf{X}_{2: K}^{T}\right)\right) . ~(7)
$$

Note that the weighting matrix is not required here because the latent variables are nondimensional. To define the covariance function we choose the linear plus radial basis function kernel
$\left(\mathbf{K}_{x}\right)_{i j}=\alpha_{1} \exp \left(-\frac{\alpha_{2}}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}\right)+\alpha_{3} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\alpha_{4}^{-1} \delta\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) . \quad$ (8) The only terms that remain in the joint distribution in equation 3 are the priors on α and β. These serve to constrain the hyper-parameters and the weight
matrix W .

The joint probability distribution can
ative log likelihood of the distribution

$$
\begin{aligned}
& L=\frac{D}{2} \ln | | \mathbf{K}_{x} \|+\frac{N}{2} \ln | | \mathbf{K}_{y}| |-K \ln |\mathbf{W}|+\frac{1}{2} \operatorname{trace}\left(\mathbf{K}_{x}^{-1} \mathbf{X}_{2: K} \mathbf{X}_{2: K}^{T}\right)+ \\
& \frac{1}{2} \boldsymbol{x}_{1}^{T} \boldsymbol{x}_{1}+\frac{1}{2} \operatorname{trace}\left(\mathbf{K}_{y}^{-1} \mathbf{Y W}^{2} \mathbf{Y}^{T}\right)+\sum_{j} \ln \left(\beta_{j}\right)+ \\
& \frac{1}{2 \kappa^{2}}{ }^{\operatorname{tracec}\left(\mathbf{W}^{2}\right)+\sum_{j} \ln \alpha_{j} .}
\end{aligned}
$$

There are many proposed methods for solving this equation: maximum a pos teriori (MAP) estimation, Balanced GPDM methods, manually specify hyper parameters, or two stage MAP. We use two stage MAP estimation where the first stage optimizes the weight matrix W and the second stage optimizes \mathbf{X}
α, and β. α, and β. Ahe distribution

$$
\begin{aligned}
& \mu_{X}(\boldsymbol{x})=\mathbf{X}_{\text {out }}^{T} \mathbf{K}_{x}^{-1} \boldsymbol{k}_{X}(\boldsymbol{x}), \\
& \sigma_{X}^{2}(\boldsymbol{x})=k_{X}(\boldsymbol{x}, \boldsymbol{x})-\boldsymbol{k}_{X}(\boldsymbol{x})^{T} \mathbf{K}_{x}^{-1} \boldsymbol{k}_{X}(\boldsymbol{x}) .
\end{aligned}
$$

These dynamics can be used for simulation of trajectories in the latent space and compared to those identified from the experimental data. Once trajectories have been simulated in latent space, they can be projected into feature space to generate simulated motions similar to the training data.
To project latent trajectories back into feature space, we can write

$$
\begin{aligned}
\mu_{Y}(\boldsymbol{x}) & =\mathbf{Y}^{T} \mathbf{K}_{y}^{-1} \boldsymbol{k}_{Y}(\boldsymbol{x}), \\
\sigma_{Y}^{2}(\boldsymbol{x}) & =k_{Y}(\boldsymbol{x} \boldsymbol{x})-\boldsymbol{k}_{Y}(\boldsymbol{x})^{T} \mathbf{K}_{y}^{-1} \boldsymbol{k}_{Y}(\boldsymbol{x}) .
\end{aligned}
$$ the mean applied to the original data.

Results

Latent Space Trajectories

- The identified manifolds are shown in Figure 2.
- All manifolds use the RBF plus linear kernel from Equation 8 on the dynamics and the RBF kernel in equation 5 for the mapping between latent space and feature space
The subfigures show GPDMs identified with 2,3 , and 4 latent DOFs, repectively.
The blue points are the identified latent trajectories, red points are the sim-
ulated trajectories, and green points are HMC samples on the simulated trajectories to represent the uncertainty in the manifold.
Arrows indicate the direction of motion.
Ideally, the manifold should appear to be cyclic and have little variation between cycles.
?

To evaluate the consistency of the manifold we project it back into feature space which is shown in Figure 3 .
-The predictions (solid line) match the experimental data (dots) very closely. Note that the dark blue cycles for $\theta_{1}-\theta_{3}$ are larger in amplitude than the remaining cyan cycles.
This behavior is likely the cause of the semi-periodic latent space trajecto-
ries discussed before. ries discussed before.
The extrapolated data (magenta) appears to be periodic repetitions of the

Figure 3: Feature Space Projection of Latent Trajectories.

Conclusions

- We use Gaussian Process Dynamic Models (GPDM) to learn both a latent space representation for bat flight dynamics and a mapping from latent space back to joint space.
This is-to the authors' knowledge-the first nonlinear dimensionality re-
duction of bat flapping flight. duction of bat flapping fight.
We have successfully identified a model which closely resembles the exper imental data provided and produces plausible synthesized motions. tracking of feature points.

Acknowledgements

The authors would like to acknowledge the following funding sources for their support: National Natural Science Foundation of China (grant numbers 113741192 and 11574183); Fundamental Research Fund of Shandong Univer-
sity (grant no. 20140Y008): Minister of Education of China Tese grant for sity (grant no. 2014QY008); Minister of Education of China Tese grant for
faculty exchange; U.S. National Science Foundation (grant no. 1510797); and Virginia Tech Institute for Critical Technology and Applied Science (ICTAS, through support for the BIST Center).
The authors would also like to thank the
The authors would also like to thank the following individuals for their sup-
port in data collection and processing. port in data collection and processing: Li Tian, Xiaozhou Fan, Chenhao Wang
Mengfan Wang, Yuxian Ye, Yuxiang Zhu, Xizhe Ding, Yang Shao, Yiwe Jiang, Kefan Chen, Yanan Zhao, Derek Liu.

