

18 September 2017

DEFORMATION TRANSFER OF 3D HUMAN SHAPES AND POSES ON MANIFOLDS

ICIP 2017

Abd El Rahman Shabayek, Djamila Aouada, Alexandre Saint, Björn Ottersten

Interdisciplinary Centre for Security, Reliability and Trust Signal Processing & Satellite Communications (SIGCOM) group

Agenda

- 1. Introduction
- 2. Manifold Representation of 3D Human Shape
- 3. Deformation Transfer on Manifolds
- 4. Results
- 5. Conclusion & Future work

Introduction

Deformation transfer copies the deformations exhibited by a source mesh onto a different target mesh.

Deformation Transfer for Triangle Meshes Robert W. Sumner and Jovan Popovic *SIGGRAPH 2004.*

Introduction: Euclidean Deformation Transfer for Triangle Meshes

securityandtrust.lu

Introduction: Limitations of existing solutions

- Existing methods are based on **Euclidean representations**.
- The triangle deformation: **3x3** deformation matrix and a **3D** displacement vector.
- The 9D (redundant DoF) of deformations is under-constrained as deformations outside the plane of the triangle are undefined.
 - A fourth virtual vertex defined by the cross product of two of the triangle edges is added **heuristically**.
- Deformations may have zero or negative determinant (inconsistent deformations)
 - Thus do not exclude non-physical deformations.

Introduction: How to solve the current problems?

- We are seeking:
 - An accurate representation which eliminates redundant DoF.
 - Deformations to be computed in closed-form without heuristics.
 - Consistent deformations to eliminate nonphysical deformations.

Manifold Representation of 3D Human Shape

- A shape is a point on a **non-linear manifold**, $M \triangleq G_T^N$.
 - G_T : is a **6D** Lie Group of triangle deformations
- Advantages:
 - Consistency (positive determinant)
 - No redundant DoF \Rightarrow less noise
 - Closed-form formulas

Freifeld, O., Black, M. J., Lie Bodies: A Manifold Representation of 3D Human Shape, In European Conf. on Computer Vision (ECCV), pages: 1-14, Part I, LNCS 7572, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012.

Deformation Transfer on Manifolds (Triangles deformation)

If a triangle **X** is not canonical, there is always a rotation matrix, R_x such that $R_x X$ is canonical.

$$\left\| v_{1}^{(X)} \right\|, \qquad A = \begin{bmatrix} 1 & U & 0 \\ 0 & V & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad U = \frac{(v_{2_{X}}^{(Y)} - v_{2_{X}}^{(X)})}{\binom{V}{2_{y}}} \qquad V = \frac{v_{2_{y}}^{(Y)}}{\binom{V}{2_{y}}}$$

UNIVERSITÉ DU LUXEMBOURG

 $S = \left\| v_1^{(Y)} \right\|$

6D Lie Group of triangle deformation

securityandtrust.lu

Deformation Transfer on Manifolds

SINT securityandtrust.lu

Deformation Transfer on Manifolds securityandtrust.lu $\exists A^k \in SO(3)$ s.t. $R^k_{(1,0)} = A^k R^k_{(0,0)}$, $\forall k$. R(0,1) ESO(3) Т_{(0,0} $P_{\mathcal{M}_2}^k S_{\mathcal{M}_2}^k \cong P_{\mathcal{M}_3}^k S_{\mathcal{M}_3}^k, \quad \forall k.$ P_2S_2 R 10,01 € 5013 V_2 $\hat{R}^{k}_{(1,1)} = A^{k} R^{k}_{(0,1)}, \quad \forall k.$ V₀ V₀ Canonical triangle in S_0^0 Canonical triangle in S_0^1 $\forall k$.

Results: 3D Human Datasets

- Input:
 - Rest-poses for the template and the target model to be transformed.
 - New poses taken by the input.
- SHREC (32, 2 kids x 16 poses)
 - The registered models were directly used
- FAUST (300, 10 persons x 30 poses)
 - The registered models were directly used.
- SMPL based generated models.

Results: SHREC

1st row: Input poses, 1st col: Input rest-poses 2nd row: our method 3rd row: Popovic & Sumner 2004

Results: Deformation Transfer applied to different rest-poses

Output generated using Popovic & Sumner 2004

- Any pose can
 be taken as a
 starting (rest,
 template) pose
 as long as it is
 available for
 the input and
 target models.
- The closer the rest-poses are, the more accurate the output is.

Results: FAUST

1st row: Input poses 1st col: Input restposes 2nd row: our method 3rd row: Popovic & Sumner 2004

Results: SMPL

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2015. **SMPL**: a skinned multi-person linear model. ACM Trans. Graph. 34, 6, Article 248 (October 2015), 16 pages. DOI: ttps://doi.org/10.1145/2816795.2818013

Conclusion & Future Work

- A novel deformation transfer technique to copy deformations on manifolds was proposed. Its advantages:
 - It uses minimal required DoF (eliminates redundant DoF).
 - Consistent deformations to eliminate non-physical deformations.
 - Deformations to be computed in **closed-form** without heuristics.
 - A more accurate representation than the traditional Euclidean representation.
 - Less computationally expensive (Parallel computations on triangles and no lifting up to the tangent space is required).
- Extend Manifold representation to broader applications like 3D Shape and Facial descriptors, Mesh encoding, Mesh editing, ... etc.

Thanks ③ Questions ?

DEFORMATION TRANSFER OF 3D HUMAN SHAPES AND POSES ON MANIFOLDS

Abd El Rahman Shabayek, Djamila Aouada, Alexandre Saint, Björn Ottersten

Interdisciplinary Centre for Security, Reliability and Trust Signal Processing & Satellite Communications (SIGCOM) group

