Deep Discovery of Facial Motions using a Shallow Embedding Layer

Afsaneh Ghasemi

Mahsa Baktashmotlagh, Simon Denman, Sridha Sridharan, Dung Nguyen Tien, Clinton Fookes Queensland University of Technoly Brisbane, Australia

Agenda

□ Introduction

• Objectives

Research Area and Background

Methodology

Introduction

□ Objectives

 $_{\odot}$ Understanding human facial actions without verbal commination

Outer brow

 Understanding pain of patients since pain always accompanied with various mode of facial actions.

- FACS: measure uniquely facial muscle movements
- Emotions can be modelled by combination of AUs

• Facial Action Recognition

[1995-2001], Cootes at. el. Active Shape Models (ASM), Active Appearance Models (AAM)

of Technology

Queensland University of Technology

• Learning non-linear relationships

Recent developments in deep learning shows promising results for the recognition

□Current Challenges

 $\circ~$ Facial action appear in various complex combinations

 Extensive efforts have been devoted to exploring the use of various hand-crafted but still using them in real time scenario is ambiguous

□ Although Deep learning shows promising results

- $\,\circ\,$ Training a complex model is computationally expensive
- $\,\circ\,$ Fully connected layers has 95% of the network parameters

□ Solution?

- U We use Random Projection to decrease parameters
- $\,\circ\,$ Powerful method for dimensionality reduction
- The original high-dimensional data is projected onto a lower-dimensional subspace using a Gaussian random projection
- In comparison with PCA
 - $\circ~\mbox{Fast, computationally efficient}$
 - $\circ~$ Preserves distances quite nicely in lower dimensional subspace

Contributions

- We propose a shallow embedding layer using Gaussian Random projection to reduce the number of parameters of Deep learning framework
- We learn dependencies of temporal segments from neutral to apex of facial actions using Long Short-Term Memory (LSTM)

□Our Deep Network consists of,

Convolutional 3D (C3D)

• As a result of C3D, we extract spatio-temporal features

o Recurrent Neural Network

 Incorporate salient temporal aspects of expression in hidden states of LSTM network, enabling to learn temporal evolution of action from neutral to onset in a video

Video Analysis

• Temporal Classification of Facial Actions using the proposed shallow embedded layer

Experimental Results

Experimental Results

□ Accuracy of facial action detection using sequence of frames:

DISFA	Average AU detection Accuracy	Pain Archive	Average AU detection Accuracy
Original approach (D = 1024)	74%	Original approach (D = 1024)	94%
Φ ₃₂	68%	Ф ₆₄	83%
Φ ₁₆	72%	Φ ₃₂	88%
Φ ₁₄ Φ ₁₀	76% 54%	Φ ₁₆	91%
- 10		Φ ₈	94%

Processing time of LSTM using proposed approach vs. the original:

	Processing time	
	Train (sec)	Test (sec)
Original approach D = 1024	262.26	0.37
Proposed approach Φ_{14}	34.26	0.02
Φ ₁₆	35.61	0.03
Φ ₃₂	36.47	0.03

Conclusions and Future work

Conclusions,

- \odot Effectiveness of using Deep learning based structure in facial action recognition
- \odot Embedding a shallow layer into the LSTM for dimensionality reduction using random projection

□ For future work,

 Dimensionally reduction at convolutional layers rather than fully connected layers, enabling them to run on smart phones

Thank you and Questions

