REFLECTANCE-BASED SURFACE SALIENCY

<u>Gilles Pitard</u>, Gaëtan Le Goïc, Alamin Mansouri, Hugues Favrelière, Maurice Pillet, Sony George, and Jon Yngve Hardeberg

The Norwegian Colour and Visual Computing Laboratory

ICIP 2017 – Beijing – 18 September 2017

Enlarging the scope to other applications

➔ Detect and quantify the salient features (such as changes and degradations) on the cultural heritage objects using new imaging modalities

Fossils

Gilles Pitard – 18 September – ICIP 2017

Gilles Pitard – 18 September – ICIP 2017

uB LE2I

Approaches for BRDF assessment

Methods	Principle	Advantages/ disadvantages	5e227
Measuring the BRDF	measures using a goniospectrophotometer	© complete characterization of an infinitesimal area element of the surface	Partie mobile Port Echantilion Partie fixe Obein and Al., CNA
		☺ total amount of data☺ data acquisition time	
Model- based rendering	analytical BRDF Models, eg. Phong, Cook- Torrance,	 not suitable for the rendering of real-world surfaces 	
Image- based rendering	reflectance estimated from photometric stereo data	 rapid acquisition not require knowledges of physical and geometrical properties 	
	e.g. Refle	ectance Transformation Ima	ging
Gilles Pitard –	18 September – ICIP 2017	NTNU Col uB LE2I	orLab

∧ RTI devices → photometric stereo acquisition

Dome v.1 ⊘ 900mm 1 digital camera 96 light sources

MeSurA Sphere ⊘ 650mm 4 cameras 112 light sources

NTNU ColorLab uB LE2I

Gilles Pitard – 18 September – ICIP 2017

1. Reflectance Transformation Imaging

N PTM Polynomial Texture Mapping

1. REFLECTANCE TRANSFORMATION IMAGING

Existing models Proposed model Polynomial Texture Hemispherical Discrete Modal **Mapping PTM Harmonics HSH Decomposition DMD** G_{\uparrow} G_{\uparrow} G_{\uparrow} 250 250 250 150 150 150 50 50 50 0 0 0 -1 -1 -0.5-0.5-0.5 0.5 0.5 0.5 0.5 -0.5 0.5 -0.5 -0.5 1_-1 HSH basis PTM basis **DMD** basis GILLES PITARD, et al. "Discrete Modal Décomposition: ...". Machine Visions and Applications, 2017 NTNU ColorLab Gilles Pitard – 18 September – ICIP 2017 **uB** LE2I

NTNU ColorLab uB LE2I

Basis of projection called « Reflectance Modal Basis »

Discretization of the nominal surface geometry

Classical equations of motion

$$M.\ddot{q} + K.q = 0 \quad avec \quad q = q(\theta, \phi, t)$$
$$q(\theta, \phi, t) = \sum_{k=1}^{+\infty} Q_k \cos(w_k t)$$
$$(M^{-1}K - \frac{1}{w_k^2}I)Q_k = 0$$

2. MODELING THE ANGULAR REFLECTANCE

Assessing the image quality of the reconstructed images

Gilles Pitard – 18 September – ICIP 2017

NTNU ColorLab uB LE2I . . .

2. MODELING THE ANGULAR REFLECTANCE

Discrete Modal Decomposition

From mechanical vibrations, DMD has notably been applied for:

- 1. Characterization and specification of geometric deviations in form, in the field of geometric tolerancing ^[1]
- 2. The 3D multi-scale topographic measurements of roughness analysis (form, waviness and roughness) ^[2]
- 3. The estimation of spacial term of a heat diffusion problem ^[3]
- 4. The assessment of the angular distribution of reflectance from RTI data [4]

Works initiated by Serge Samper at SYMME Laboratory and continued by:
[1] H. Favreliere, Modal Tolerancing : From metrology to specifications, Ph.D. thesis, 2009
[2] G. Le Goic and Al., Multi scale modal decomposition of primary form, waviness and roughness of surfaces, Scanning, 2011
[3] T. Pottier and Al., Proposition of a modal filtering method to enhance heat source computation..., IEJS, 2014
[4] G. Pitard and Al., Discrete Modal Decomposition for surface appearance modelling and rendering, Optical Metrology SPIE, 2015

Gilles Pitard – 18 September – ICIP 2017

the detection

Gilles Pitard – 18 September – ICIP 2017

N Proposal

- ✤ aim: creation of a detection method based on the modal spectra
- **RTI DATA** \rightarrow Detecting the significant deviations in the angular reflectance

3. COMPUTING THE SALIENCY MAPS

17

∿ Two families of modes in the RMB

Simple modes $\rightarrow rotation invariants$

Congruent modes

3. COMPUTING THE SALIENCY MAPS

18

℁ Two families of modes in the RMB

□ Simple modes

□ **Congruent modes** \rightarrow pair with the same shape but oriented differently

Step 2: changing the parameterization for the congruent modes

→ Separating *phase-angle* and *amplitude* components

3. COMPUTING THE SALIENCY MAPS

20

Step 3: multivariate analysis of modal amplitudes λ'_j

uB LE2I

Psychophysical experiments

21

B

T. Puntous, et al. "Ability of quality controllers to detect standard scratches on polished surfaces," *Precision Engineering*, **2013**

Gilles Pitard – 18 September – ICIP 2017

3. COMPUTING THE SALIENCY MAPS

Saliency maps obtained from our methodology

Link in a watch bracelet

23

Lighter body

Gilles Pitard – 18 September – ICIP 2017

4. CONCLUSION

Ne claim:

- A change in the DMD parametrization of angular reflectances for the comparison of reflectance shapes independently from their spatial orientation
- Detection and location of changes (saliency maps) in reflectance shape over the inspected by performing a multivariate analysis in this rotation-invariant space

🔌 Ongoing tasks:

Evaluation of the criticity of the detected anomalies by using several modalities (reflectance, geometry, spectral response)

NTNU ColorLab uB LE2I 25

Gilles Pitard – 18 September – ICIP 2017

THANKS !

112 LED modules

Gilles Pitard – 18 September – ICIP 2017