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Compressive Sensing Model

The compressive sensing (CS) problem can be formulated as:

1
min §||Y—Ax||%+)\Hc||*, s.t. x=Bc, (1)

where
o A € RM*N s the sensing matrix and usually M < N.
@ x is the desired signal

@ c denotes the coefficients which are sparse (|| - ||« = || - [|1) or
low rank (]| - ||« symbolizes the nuclear norm)

Given ¢, we can recover x via B.



@ Deep learning methods, especially the convolutional and
deconvolutional networks, have achieved excellent recognition results
on benchmark datasets.

@ Deconvolutional networks used in an unsupervised manner, aim to
reconstruct the input signals as well as extracting features.

@ Most existing dictionary learning algorithms learn dictionaries on small
patches. Compressive sensing, however, usually imposes compression
on the entire image. Similarly, the convolutional factor analysis (CFA)
models learn dictionaries on entire images, too.

Thereby, it is feasible and appropriate to leverage this CFA technique to
reconstruct desired signals x from compressed measurements y.

Y. Pu, X. Yuan, A. Stevens, C. Li, and L. Carin, “A deep generative deconvolutional
image model,” AISTATS 2016
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Convolutional Factor Analysis of Images

Considering the image case investigated in CS, let X,, € RMxxNyxNe

denote the three-dimensional (3D) image, which can be a gray-scale image
(Ne = 1), an RGB image (N = 3), or a hyperspectral image (N, denoting
the spectral channels). Under the convolutional factor model, we jointly

consider N images, and for nt" image
K
Xn = Z Dk * sk,n + Ena (2)
k=1

where Dy € R *Ne is the convolutional dictionary (kernels or filters),
Sk.n € RMNctm=1)x(Ny+ny—1)xNe denotes the coefficients (features) and E,,
signifies the residual or noise.

The two-dimensional convolution ‘x’ is performed on each slice

(nc =1,...,Nc) of D and S ,. Note the spatial size of Sy, is

(Ny + nx — 1) x (N, 4+ n, — 1) such that the image X, will be of ‘valid’
size after convolution.



Impose Sparsity during Training

Without considering CS, the problem during training can be modeled as

1
min EZnNzl HXn—EkK:l Dk*Sk,,,||%+)\HS||1, (3)

where [[S|l1 = >, « Sk,all1. This leads to

1 N K
£(D,S,\) =3 Yo IXn =Y DixSkall5 + A [ISkali  (4)
n=1 k=1 n,k
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Introduce an auxiliary variable Z,

. 1 N K
min 2 Z 1 Xn — Z Dy * Sk,h”% + AllZ]f1, st. Z=S. (5)
n=1 k=1

Consider the Lagrange multiplier {V, 7} and denote
s = vec(S), z = vec(Z), v = vec(V). This leads to

‘C(D7 Sa Z,V, )‘777) = %ZnNzl ||xn - Z/’f:l Dk * sk,””%
HAZ + 3IS - Z|3 +vi(s—2).  (6)



Subproblems

Define U = (1/n)V,

1 N K
£(D,S,Z,U,\m) = 5> [Xn = > Dic# Snll3
n=1 k=1

+AIZll + 31IS - Z+ U[3 - ZlIUl3. (7)



Subproblems

Define U = (1/n)V,

1 N K
‘C(Dasvz7 U7>\’77) = 5 Z ||xn - Z Dk * sk,””%
n=1 k=1
+AZ]1 +3IS —=Z+ V|3 - ZU[3.  (7)

ADMM cyclically solves (7) via the following sub problems:

D = arg mgn(% EN: | Xn — i Dy * Sk.nll3) (8)
n=1 k=1

St = arg msin(% SN L IXn = 2K Dy x Sknll3+21S —Z+UJ3) (9)

2t = arg mzin (AIZ1+ 2IS—Z + U|3) (10)

Uttt .= U + (S - 2) (11)

where t denotes the iteration.



Solve D: x, = vec(X,), di = vec(Dy), Dy * Sy n = Fy nd,

—k _ K
X, =Xn = =112k Fi ndic,

N
dift=di+5Y F;n(x;" — Fyndy), (12)
n=1
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Solve D: x, = vec(X,), di = vec(Dy), Dy * Sy n = Fy nd,
X, K = xn - ZkK’:l,k’;ék Fiondir,

N
dift=di+5Y F;n(x;" — Fyndy), (12)
n=1

Implementation details in MATLAB:

Findi = Dy xSy p = conv2(Sy p, Dy, ‘valid’) (13)
Fi.nXn = conv2(rot90(Sk », 2), Xy, ‘valid’) (14)
Tisk,n = Dk xSk p = conv2(Sk p, Dy, ‘valid’) (15)
T/ x, = conv2(X,, rot90(Dy, 2), ‘full’) (16)

We also found that using “fft2( )" in MATLAB is at least 4x faster than
“conv2( )" by providing almost the same results.
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Solve S and Z

e Eq. (9) is a quadratic optimization problem. sy , = vec(Sk.n),
Dy * Skn = TkSkn XK = x5 — Zl}f’:l,k’#k TSk n.
Given {T, z, u}, the optimal sy , is the solution of the following linear
system
(Te T+ 1)k = T X,  +1(2kn — k), (17)
which can be solved effectively using conjugate gradient (CG)
algorithms.

e Eq. (10) can be solved via the shrinkage operator, i.e., soft
thresholding
Z = soft(S* + %, vY), (18)
which can be performed element-wise, i.e., for it" element,
z

£ = sign(sf + %) max((sf + %] =910 (19)

i
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Extend the CFA model to CS

In Compressive Sensing:

yn = Axna (20)
where x,, denotes the n'" vectorized image.
1N , N K
min 5> yn = Axallz £ A3 > lIskallr, (21)
n=1 n=1 k=1
s.t. xp,= Zle Tksk,n- (22)

This leads to the following objective function

1 N K
L(T.8,2) =5 Doy =AY Tuskalz + A lIskall  (23)
n=1 k=1 n,k
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Two Models of CS-CFA

We consider to solve (23) in two ways:

o The convolutional dictionary ({Dx}K_; or {T,}K_,) is pre-learned by
training data. In this case, (23) aims to solve

L K
argmlniz Hyn—AZTkSk,n||%+)\ZHsk,nHI- (24)
s} 273 k=1 nk

@ The convolutional dictionary ({Dx}E_; or {Tk}K_,) is unknown a
priori and will be learned in situ from the raw measurements {y,}\_,.
In this case, (23) aims to solve

L K
arg min EZ ||yn—AZTkSk,n %-F)\ZHSk,nHl- (25)
{Tst 203 k=1 n,k
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CS Inversion with Pre-Learned Convolutional Dictionary

mlnfzHy,,—AZTksk,,||2+)\Z||zk,,||1, S.t. Sk.n = Zkn, Vk,n.
n=1 k=1 k,n

This results in the objective function

L(s;z,u,0m) = 3 3501 Ilyn = A YK Thsiall3
A [zeal + 3 D lIskn = Zin + a3 + Const.
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CS Inversion with Pre-Learned Convolutional Dictionary

mlnfE:Hy,,—Az:Tksk,,||24—)\z:||zk,,||17 S.t. Sk.n = Zkn, Vk,n.
n=1 k=1 k,n

This results in the objective function

L(s,z,u, M) = 53001 |y, — A1 Thsinll3
A [zeal + 3 D lIskn = Zin + a3 + Const.

ADMM cyclically solves this via the following sub-problems:

s*hi=argmin (53000 Iy, — AXIC Tiskall3
+ 330k ISk = Zkon + Uk nll3) (26)
zt = arg mzin()\z |zknllt + 2 n— Zin+Uall3) (27)
k,n
uttt = ut (s - 2) (28)
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Via defining

_k def K
Yo =Yn—A Zk’:l,k/;,ék Tw sk n

given {T, z, u, A}, the optimal s , is the solution of the following linear
system

(TR ATAT, +0l)skn = Ti ATy X+ n(zkn — Ukn)- (29)

Again, this can be solved effectively via CG algorithms.
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CS Inversion by Learning Convolutional Dictionary from

Measurements

L(s,z,u, T, A0) =300y — AX R Tesinl3
+AY Nzl + gz ISk.n — Zk.n -+ Uk n||3 + Const.

Recalling the definition in (13), in addition to the subproblems described
n (26)-(28), we also need to update {Dy}K_;,

K
d™! = arg m|n Z ly,— A Z Frndil3). (30)
Similar to (8), this can be solved by the gradient descent:
dt+1 dt + En 1 FZnAT(yn AFk,ndk)7 (31)

where y;k =y,— A Zk’:l,k’;ﬁk Frondi.
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CS-CFA

Require: Input measurements {y,}"_,, sensing matrix A, parameters
{8,n}
1: Initialize D, S, Z, U.
2: for t = 1 to Maxlter do
3:  Update D by Eq. (31).
4:  Update S by Eq. (29).
5. Update Z by shrinkage operator, Eq. (19).
6: Update U by Eq. (28).
7: end for
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Flow Chart of Joint Model
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Figure: Flow chart of Joint Model.
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Joint Model Using Softmax

For joint classification and reconstruction task, we have labeled
(compressed) data {y,, c,}M_;, where ¢, = {1,..., C} considering C
classes in total. Introducing the classifier weight matrix H € R¢*Ns and
the bias vector a € RMs, we have

exp(h,-sg,L) + ;)

, (32)
> exp(hjsﬁL) + aj)

p(ch = i|sn, H, ) = softmax;(h;s\") + o) =

where h; denotes the it row of the weight matrix H and «; symbolizes
the i*h element of the vector . These weights {H, a} can be learned
jointly with the CFA network, thus constituting a supervised CS-CFA
model. Similarly, a C-class SVM can also be used.
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Reconstruction: Compare with Others
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Figure: Average PSNR of reconstructed results versus CSr with different
algorithms on MNIST dataset.
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Joint Recon ution and Classification

Table: Reconstruction PSNR (dB) and classification accuracy (%) at various CSr
on MNIST.

CSr 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 no CS

Rec. PSNR 15.65 19.73 21.55 22.51 23.53 24.02 24.22 24.63 24.84 -
Softmax 75.88 90.88 92.89 93.78 94.47 94.46 94.35 94.38 94.39 93.84
Linear SVM 70.30 88.57 91.64 93.45 93.79 93.76 93.12 93.52 93.56 92.13
Nonlinear SVM 77.62 92.38 94.93 95.29 96.37 96.77 96.84 96.82 96.79 96.32
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Q& A

xyuan@bell-labs.com
https://www.bell-labs.com/usr/x.yuan
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