MULTIDIMENSIONAL NONSEPARABLE OVERSAMPLED LAPPED TRANSFORMS: THEORY AND DESIGN

Abstract

Multidimensional (MD) nonseparable oversampled lapped transforms (NSOLTs) are proposed.

- NSOLTs are MD **redundant** filter banks.
- The filters are **nonseparable**, **symmetric**, real, overlapped and compact-supported.
- They are based on **lattice structures** and tree decomposition is available.
- The redundancy is flexibly controlled by # of Chs. P and downsampling ratio M.
- NSOLTs are capable of constructing **Parseval tight frames** in ANY # of dimensions.
- Example-based design is available through the **dictionary learning** approach.
- Comparison with separable systems shows the significance in terms of non-linear Approx.

Index Terms - Multidimensional signal processing, oversampled filter banks, lattice structure, tight frame, dictionary learning, iterative hard thresholding.

I. Introduction & II. MD-OLPPRFB

MD Oversampled Linear-Phase Perfect Reconstruction Filter Banks are dealt with. Let $P = \sharp Chs.$

 \mathbf{M} : Downsampl. Mtx $\bar{\mathbf{n}}$: Polyphase order

Figure 2: 2-D illustration on meanings of primal Params.

NOTE: Polyphase matrices $\mathbf{E}(\mathbf{z})$ and $\mathbf{R}(\mathbf{z})$ yield a compact matrix representation of convolution (linear) networks.

Shogo MURAMATSU, Kosuke FURUYA and Naotaka YUKI

Faculty of Eng., Niigata University, Japan

Journal Presentation: IEEE Transactions on Signal Processing (Volume: 65, Issue: 5, March1, 1 2017)

III. Lattice Structures

Type-I and Type-II lattice sturctures are proposed. 2-D DCT Parameter Parameter matrices matrices Sign Params. Even Sym. Angle Odd Sym.

Figure 3: Lattice structure of a Type-I synthesis PU NSOLT. The impulse responses (atoms) are even- or odd-symmetric.

Design Examples

© 2017 IEEE. Reprinted, with permission, from S. Muramatsu, K. Furuya and N. Yuki, "Multidimensional Nonseparable Oversampled Lapped Transforms: Theory and Design," in IEEE Transactions on Signal Processing, vol. 65, no. 5, pp. 1251-1264, March, 1 2017. doi:10.1109/TSP.2016.2633240.

V. Performance Evaluation

Table 1: PSNRs [dB] of sparse Approx. results with IHT, where "SP" means "Separable." $p_{\rm s}$ and $p_{\rm a}$ are \sharp s of Sym. and Anti-sym. Chs., respectively.

Туре	P		Redundancy	$\bar{\mathbf{n}} = (N_0, N_1)^T$		
	$p_{ m s}$	p_{a}	R = P/M	(1, 1)	(2, 2)	(3, 3)
SP	3	3	3/2	(a) 23.50	(b) 23.50	(c) 23.50
I	2	2	1	(d) 24.71	(e) 24.86	(f) 25.38
	2	3	5/4	(g) 24.71	(h) 25.27	(i) 28.22
	3	2	5/4	(j) 24.71	(k) 26.69	(I) 28.89
	3	3	3/2	(m) 26.90	(n) 29.69	(o) 29.75

- symmetric atomic images can be constructed.
- [Gan et al., (2003)] is extended to the MD case. convolution (linear) networks.
- The theory of the 1-D OLPPRFBs in Parseval tight frame with non-separable NSOLTs yield a structured framework of MD
- Its applications include image/volumetric data restoration and pattern recognition.

IV. Example-based Design

- $\{\hat{\mathbf{D}}, \hat{\mathbf{y}}\} = rg\min_{\mathbf{D}, \mathbf{y}} \|\mathbf{x} \mathbf{D}\mathbf{y}\|_2^2,$ s.t. $\|\mathbf{y}\|_0 \leq K$
- Sparse Approximation $\hat{\mathbf{y}} = \arg\min_{\mathbf{y}} \|\mathbf{x} - \hat{\mathbf{D}}\mathbf{y}\|_2^2,$ s.t. $\|\mathbf{y}\|_0 \leq K$ 2 Dictionary Update $\hat{\Theta} = \arg\min_{\Theta} \|\mathbf{x} - \mathbf{D}_{\Theta}\hat{\mathbf{y}}\|_2^2$
- $\hat{\mathrm{D}}=\mathrm{D}_{\hat{\varTheta}}$

Figure 4: Dictionary learning

\leftarrow Impluse responses of synthesis filters designed through SPLOT and NSOLT frameworks for training image, where $\mathbf{M}=$ $diag(M_0, M_1) =$ $\operatorname{diag}(\mathbf{2},\mathbf{2})$ and the other construction parameters are summarized in Tab. 1

↗ Training volume data, part of MRBrain, that is 32 imes 32 imes 32volxels in 12-bpp grayscale.

 $^{\nearrow}$ Impluse responses of synthesis filters designed through NSOLT framework for the training data.

VI. Conclusion

- Mar. 1999.

This work was supported by JSPS KAKENHI under Grant JP26420347.

Related Topics Beyond the Paper

Sep. 18, ICIP 2017, Beijing

Part of the References

[Muramatsu et al., (1999)] "A design method of multidimensional linear-phase paraunitary filter banks with a lattice structure," IEEE Trans. Signal Process., vol. 47, no. 3, pp. 690-700,

[Gan et al., (2003)] "Oversampled linear-phase perfect reconstruction filterbanks: Theory lattice structure and parameterization," IEEE Trans. Signal Process., vol. 51, no. 3, pp. 744-759, Mar. 2003.

Acknowledgements

 SaivDr Package - File Exchange - MATLAB Central - MathWorks,

https://mathworks.com/matlabcentral/ fileexchange/45084-saivdr-package • S. Muramatsu *et al.*, "Image restoration with 2-D non-separable oversampled lapped transforms," *Proc. of IEEE ICIP*, pp.1051-1055, Sep. 2013. • S. Muramatsu *et al.*, "Efficient parameter optimization for example-based design of nonseparable oversampled lapped transform," Proc. of IEEE ICIP, pp.3618-3622, Sep. 2016. • K. Horiuchi *et al.*, "Fast convolution technique for non-separable oversampled lapped transforms," *Proc. of APSIPA ASC*, Dec. 2016. S. Nagayama *et al.*, "Complex nonseparable oversampled lapped transform for sparse representation of millimeter wave radar image," Proc. of IEEE ICIP, Sep. 2017.