COMPLEX NONSEPARABLE OVERSAMPLED LAPPED TRANSFORM FOR SPARSE REPRESENTATION OF MILLIMETER WAVE RADAR IMAGE

Satoshi NAGAYAMA[†]

Abstract

This work generalizes an existing framework of nonseparable oversampled lapped transforms (NSOLTs) to effectively represent complexvalued images.

- NSOLT is a redundant transform with linear-phase, compact-supported and perfect-reconstruction property.
- Generalized structure of NSOLTs is proposed to cover complex-valued atomic images.
- Effectiveness of the structure is verified by evaluating the sparse approximation performance.

Key words – Complex dictionary, NSOLT, Parseval tight frame, Millimeter wave radar, Sparse approximation

Introduction

- Sparsity-based image restoration
- denoising, deblurring, super-resolution, inpainting, compressive sensing, etc.
- NSOLT [1]
- Effective for image restoration problem
- Example-based design (dictionary learning)
- Problem
- Existing NSOLT can only deal with real-valued signal.
- Insufficient degrees of freedom for complex-valued images.
- Objective
- Generalize existing real-valued NSOLT (\mathbb{R} NSOLT) to complex number field.
- Evaluate the effectiveness by sparse approximation performance of complex-valued images.

Shogo MURAMATSU[†] Hiroyoshi YAMADA[†] Yuuichi SUGIYAMA[‡]

[†] Niigata University, Japan [‡] FUJITSU TEN LIMITED, Japan

Complex Nonseparable Oversampled Lapped Transform

- Complex-valued redundant transform satisfying linear-phase, compact-supported and perfect-reconstruction property.
- Type-I CNSOLT includes Type-I RNSOLT as a subset.
- Lattice structure of analysis bank is obtained by a cascade cunstruction as

Figure 1:Lattice structure of analysis bank of 2D Type-I CNSOLT

Performance Evaluation

- Design example
- \mathbb{R} NSOLT and \mathbb{C} NSOLT

Table 1:Common settings of 2-D Type-I NSOLTs

Downsampling factor \mathbf{M}	2×2
Polyphase order $ar{\mathbf{n}}$	$[2, 2]^T$
#Channels P	6
#Tree levels $ au$	4
Redundancy R	$< \frac{5}{3}$

(b) (a) Figure 3: Atomic images of (a) RNSOLT, (b) CNSOLT

Sparse Approximation

- Problem settings • Find a sparse vector $\hat{\mathbf{y}}$ that mimize:
 - - $\|\mathbf{x} \mathbf{D}\mathbf{\hat{y}}\|_2^2$ s.t. $\|\mathbf{\hat{y}}\|_0 \leq K$,
- K : Number of nonzero elements
- Iterative hard thresholding (IHT) algorithm • Heuristic algorithm for solving (1)

$$\mathbf{y}^{(i)} \leftarrow H_K \left(\mathbf{y}^{(i-1)} + \mathbf{D}^H \left(\mathbf{x} - \mathbf{D} \mathbf{y}^{(i-1)} \right) \right)$$
(2)

• $H_K(\cdot)$: Hard thresholding operator.

Figure 2: The block diagram of IHT.

Results

• Sparse approximate simulation

- Orginal image **x**: millimeter wave radar complex image in Fig. 4
- The intensity and hue show the magnitude and phase characteristics, respectively.

Figure 4: Original image of size $2,992 \times 320$ [pixels],

(a)Figure 5:Sparse approximation results width 2-D NSOLT dictionaries through IHT.

(a)	$\mathbb{R}NSOLT:$	MSE =	$2.36 \times$	10^{-5}
(b)	\mathbb{C} NSOLT:	MSE =	$1.59 \times$	10^{-5}

(1)

This work was supported by JSPS KAKENHI Grant Numbers JP26420347, JP17H03261.

Conclusion

• Proposed the lattice structure of 2-D CNSOLT • Employed CNSOLT as a sparse modeling method for complex-valued images • Effectiveness of the proposed method for millimeter wave radar images was examined by sparse approximation performance.

References

[1] S. Muramatsu, K. Furuya, and N. Yuki. Multidimensional nonseparable oversampled lapped transforms: Theory and design. IEEE Transactions on Signal Processing, 65(5):1251–1264, March 2017.

[2] X. Q. Gao, T. Q. Nguyen, and G. Strang. Theory and lattice structure of complex paraunitary filterbanks with filters of (hermitian-)symmetry/antisymmetry properties. IEEE Transactions on Signal Processing, 49(5):1028–1043, May 2001.

Acknowledgements

