Semantic Principal Curvature (SPC)

Justin Lev¹, Joo-Hwee Lim² and Nizar Ouarti³

¹ University Joseph Fourrier, ² I2R, Astar, ³ Sorbonne UPMC Singapore

@ Nizar Ouarti, 1C1P 2017, PCL

Outline

- Position of the problem
- Principal Curvatures (not Gaussian Curvature)
- Histogram: aggregation of the curvatures
- Metric
- Results
- Discussion, Conclusion

Motivation

- 3D sensors are more and more popular, Kinect, Lidar, etc
- In some conditions like by night, it is difficult to recognize an object based on colors
- Recognition of an object based on the Point Cloud and rotation-translation invariants
- Some algorithms exist that are local. Here we propose a **global** approach.

@ Nizar Ouarti, 9C9P 2017, PCL

 Gestalt Principle: Perception of the overall shape emerges from individual stimuli

Principal curvature

- Principal curvature K1 and K2
- Second order description of a surface
- Local
- Invariant
 - Translation
 - rotation
- Different from Gaussian curvature [K1;K2] not K1xK2

Second order fit of the Neighborhood

• The curvature is based on a neighborhood

 $r_{\lambda} = \lambda \cdot \max_{\substack{p,q \\ \text{max distance, } M}} (\|v_p - v_q\|_2), \ \lambda \in [0;1]$ $\underbrace{R_{\lambda}}_{\text{max distance, } M} \{p \in \mathbb{R}^3 \mid \|v_i - p\|_2 \leq r_{\lambda}\}.$

• Polynomial fit (2nd order) on the neighboring points

$$\varepsilon = \sum_{v_k \in B_{v_i,\lambda}} \left(J_{i,n}(v_k) - z(v_k) \right)^2$$

Metric

- The signature is first normalized
- Distance chosen is the Khi² distance

$$d_{\chi^2}(\mathbf{A}, \mathbf{R}) = \sum_j \frac{(H_{\mathbf{A}}(j) - H_{\mathbf{R}}(j))^2}{H_{\mathbf{A}}(j) + H_{\mathbf{R}}(j)}$$

• Khi² distance good metric for the distance between 2 histograms

Realistic corruptions of Point Clouds

- Noise related to
 - quality of the 3D sensors
 - distance of acquisition
 - light condition
 - material of the observed objects
- Down-sampling: related to sensor resolution
- Occlusions
 - in a real scene an object can be occluded by another object
 - in some case the object in seen from only one point of view.

Resilience to down-sampling

[@] Nizar Ouarti, ICIP 2017, PCL

Resilience to noise

@ Nizar Ouarti, 1CIP 2017, PCL

Resilience to occlusion (20%)

@ Nizar Ouarti, 1CIP 2017, PCL

Discussion, Conclusion

- Our method provides good results for occlusions, noise and down-sampling
- Easy to implement
- Compared to local methods (key points) our method is more robust in noisy conditions
- Combined with Lidarbox (Razali & Ouarti, ICIP 2017), possibilities to segment and to classify.

