WordFences: Text Localization and Recognition

ICIP 2017

Andrei Polzounov (Universitat Politecnica de Catalunya, Barcelona, Spain),

Artsiom Ablavatski (A*STAR Institute for Infocomm Research, Singapore),

Dr Sergio Escalera (Universitat de Barcelona, Barcelona, Spain),

Dr Shijian Lu (A*STAR Institute for Infocomm Research, Singapore),

Dr Jianfei Cai (Nanyang Technological University, Singapore)

Sponsors

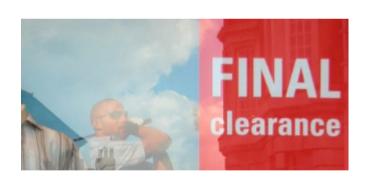
- Institute for Infocomm Research (I²R), at Singapore's Agency for Science, Technology and Research (A*STAR)
- CERCA Program, Government of Catalonia

Problem Description

- Text detection and recognition in natural scene imagery.
- Good test case problem for AI research and for uses in industry: mapping business from StreetView, translating menus or billboards, etc.

Motivation

- OCR can be used on scanned text.
- Natural images have a ton of variety in fonts, scales, kerning and features.

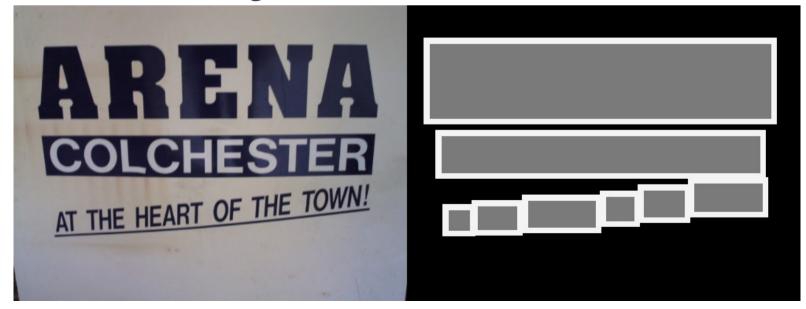


Proposed Solution

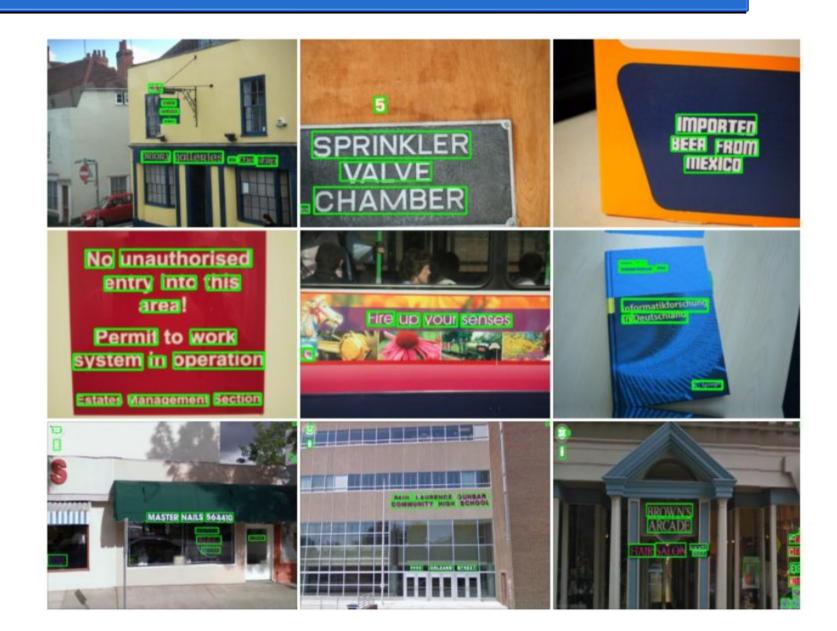
- 2-stage deep learning network
 - Find locations/ROIs (text localization) with CNN.
 - Detect characters (end-to-end text recognition) with RNN.
- 1st stage is the more difficult one. It is related to object recognition and semantic segmentation problems in Computer Vision.

Contributions

- Two main contributions:
 - Use a word separator a "WordFence" for deliniating individual words.
 - Using a novel weighted pixelwise softmax function for training the semantic segmentation.



Sample Detections

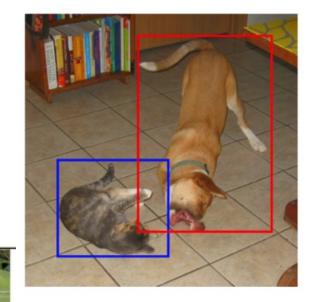


Related Work (CV)

- Maximally Stable Extremal Regions by Huang et al.(2014) –
 works by first using an MSER transform and then training a
 CNN.
- Stroke Width Transform by Epshtein et al. (2010) an edge detection method, that relies on the fact that a given text font should have similar width/thickness for each stroke in a character.
- Edge Boxes by Zitnick and Dollár (2014) simple object score based on the number of edges within a given sliding window. Sparse and fast to evaluate, but results could be better.

Related Deep Learning

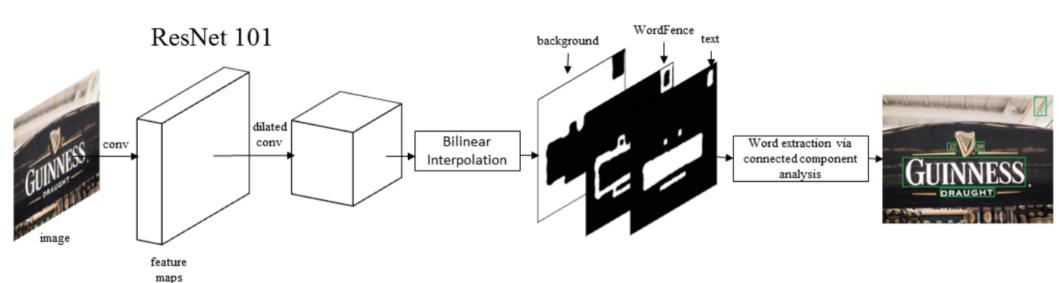
- Single shot ROI detection: YOLO (2015) by Redmon *et al.* and SSD: Multibox (2015) by *Liu et al.* both of these work by splitting image into grid and calculating probabilities
- Fully convolutional networks (2015) by Long and Shelhamer replace fully connected layers with deconv.
- DeepLab (2015) Liang-Chieh *et al.* and ResNet101 (2016) by He *et al.* are the bases for this work.



Related Text Detection

- SynthText (2016) by Gupta, Vedaldi, and Zisserman. Synthetic dataset for text recognition and one-shot box approach to learning.
- Jaderberg et al. (2014) used CNN to generate high number of proposals and filter with Random Forest (HoG).
- He *et al.* (2016) cascaded CNN with false positive rejection to detect textlines (no split).

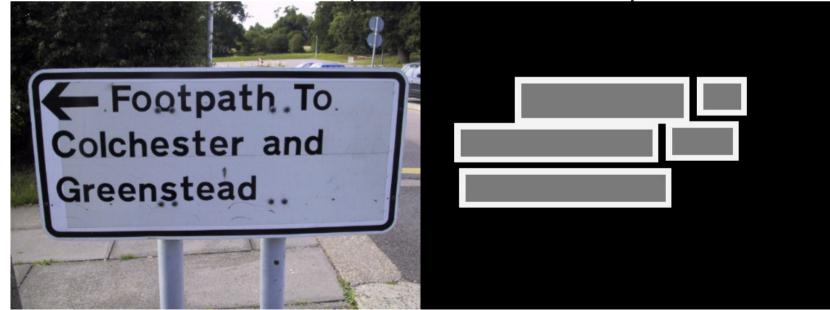
Model Overview



Word Localization as Semantic Segmentation

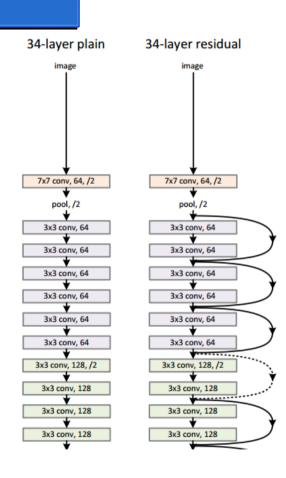
- Semantic segmentation is a well known problem.
- Able to handle different scales using wide fields of view and multi-scale inference.

Ground truth word separators created by dilation.



ResNet of Exponential Receptive Fields

- ResNets help to train huge networks without a vanishing gradient.
- Receptive fields can be enlarged using convolutional dilations in the ConvNets.
- Deep network + exponential receptive fields = effective multi-scale detection of different sized text.



Weighted Pixelwise Softmax Loss

 Background pixels are the majority. More emphasis for text and WordFence pixels is needed.

```
Algorithm 1 Pixelwise Weighted Softmax Loss
```

Require: Predicates after fusion **Pr**, ground truth labels **L**

1: $probs \leftarrow Softmax(\mathbf{Pr})$

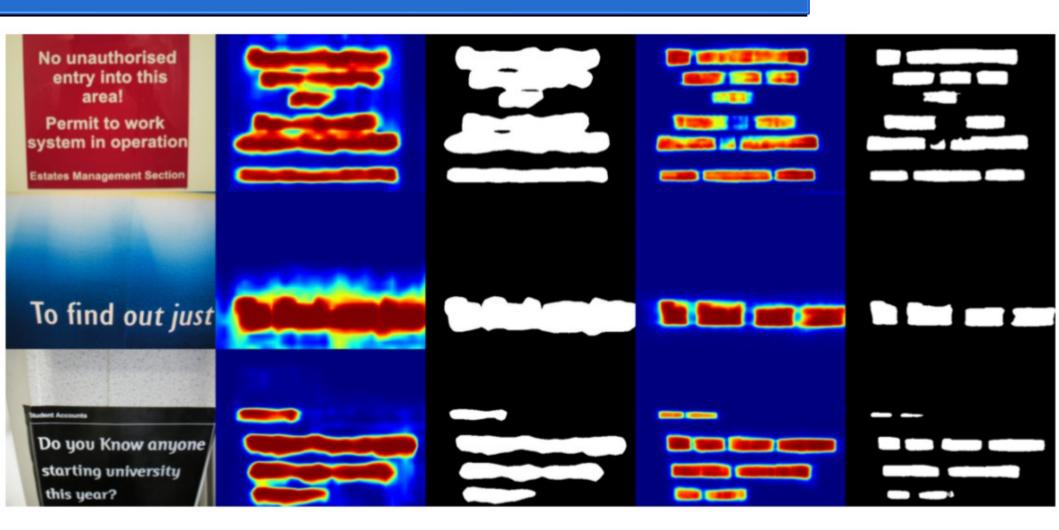
▷ pixel probabilities

- 2: $m \leftarrow NumberOfUniqueLabels(\mathbf{L})$
- 3: $n_1, n_2, \ldots, n_m \leftarrow CountsOfUniqueLabels(\mathbf{L}) \triangleright \text{get counts of each label on a ground truth image}$
- 4: $loss \leftarrow -\sum \frac{1}{n_{gt}} \log(probs_{gt})$

▶ weighted loss calculation

- 5: $Backpropagate(loss, \frac{1}{n_1}, \frac{1}{n_2}, \dots, \frac{1}{n_m})$ factors
- \triangleright loss backpropagation with normalization
- Algorithm allows us to rebalance per image weights on the fly.

WordFence vs No-WordFence



WordFences act as penalization for merged words.

Text Datasets

- ICDAR 2011 and ICDAR 2013 International Conference on Document Analysis and Recognition
- COCO-Text subset of the popular MS-COCO dataset for object recognition (21 classes)
- SVT Google Street View data
- SynthText synthetic text mixed with scene images from Gupta *et al.*

Localization Results

	${\rm PASCAL~VOC~IoU} = 0.5$								
Model	ICDAR11			ICDAR13			SVT		
	P	R	F	P	R	F	P	R	F
Tian <i>et al.</i> [32]	0.89	0.79	0.84	0.93	0.83	0.88	-	-	-
Gupta et al. [5]	0.78	0.63	70.0	0.78	0.63	0.70	0.47	0.45	0.46
Jaderberg et al. [11]*	0.89	0.68	77.4	0.89	0.68	0.77	0.59	0.49	0.54
Gupta et al. $[5]$ *	0.94	0.77	0.85	0.94	0.76	0.84	0.65	0.60	0.62
WDN (ours)	0.64	0.92	0.75	0.65	0.92	0.76	0.47	0.63	0.54

• Methods marked with * use multi-stage false-positive detectors.

Localization Results

	${\rm PASCAL~VOC~IoU} = 0.5$								
Model	ICDAR11			ICDAR13			SVT		
	P	R	F	Р	R	F	P	R	F
Tian <i>et al.</i> [32]	0.89	0.79	0.84	0.93	0.83	0.88	-	-	-
Gupta et al. [5]	0.78	0.63	70.0	0.78	0.63	0.70	0.47	0.45	0.46
Jaderberg et al. [11]*	0.89	0.68	77.4	0.89	0.68	0.77	0.59	0.49	0.54
Gupta et al. $[5]$ *	0.94	0.77	0.85	0.94	0.76	0.84	0.65	0.60	0.62
WDN (ours)	0.64	0.92	0.75	0.65	0.92	0.76	0.47	0.63	0.54

Methods marked with * use multi-stage false-positive detectors.

Recognition Results

Model	Year	IC11	IC13
Neumann et al. [20]	2013	0.45	-
Jaderberg et al. [11]	2015	0.69	0.76
Gupta et al. [5]	2015	0.84	0.85
WDN	2016	0.84	0.86

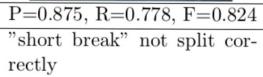
- The recognition stage uses proposals given from the detection network.
- Recognition stage is based on the CRNN network by Shi et al. (2016).

Localization Results

	${\rm PASCAL~VOC~IoU} = 0.5$								
Model	ICDAR11			ICDAR13			SVT		
	P	R	F	P	R	F	P	R	F
Tian <i>et al.</i> [32]	0.89	0.79	0.84	0.93	0.83	0.88	-	-	-
Gupta et al. [5]	0.78	0.63	70.0	0.78	0.63	0.70	0.47	0.45	0.46
Jaderberg et al. [11]*	0.89	0.68	77.4	0.89	0.68	0.77	0.59	0.49	0.54
Gupta et al. $[5]$ *	0.94	0.77	0.85	0.94	0.76	0.84	0.65	0.60	0.62
WDN (ours)	0.64	0.92	0.75	0.65	0.92	0.76	0.47	0.63	0.54

• Methods marked with * use multi-stage false-positive detectors.

ICDAR 2011



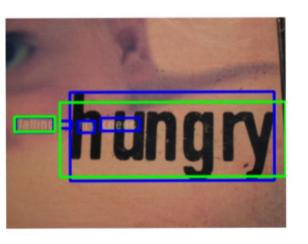
P=0.625, R=1.000, F=0.769

Some false positives

ICDAR 2013

P=0.833, R=0.714, F=0.769

Some overlaps are < 0.5 IoU



P=1.000, R=0.400, F=0.571	P=0.300, R=0.750, F=0.429
Challenging case - word is	Too much word splitting,
within another word	due to tricky font and spac-
	ing

Problems Encountered

- Going from segmentations to bounding boxes.
- Noisy detections and many false positives:
 - Many small detected regions.
 - Camera artifacts such as glare.
 - Need for balancing precision vs recall.

Conclusion

- Text recognition as semantic segmentation
- WordFences as penalization
- SOTA recall on detection, which provides high quality samples to the recognition stage (which in itself is able to throw away false positives).
- SOTA F-scores on recognition
- Paper submitted to ICIP 2017 International Conference on Image Processing

Future Work

- WDN relies on visual information to split words.
- Humans also use word semantics and memory.
 - "Raeding wrods with jubmled letetrs".
- A smarter system would be able to read text directly from images without a midpoint CV representation.

Questions?

