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Recurrent Neural Networks (RNN)
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Gradient Flow in Recurrent Networks

y[t] = f (Wx[t] + Ry[t−1] + b)
y
[t-1]

y
[t]

x

y
[t]

The derivative of the loss L with respect to parameters θ:

dL

dθ
=

∑
1≤t2≤T

dL[t2]

dθ
=

∑
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∑
1≤t1≤t2

∂L[t2]

∂y [t2]
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∂y [t1]
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where

∂y [t2]

∂y [t1]
=

∏
t1≤t≤t2

∂y [t]

∂y [t−1]
=

∏
t1≤t≤t2

RTdiag [f ′(Ry [t−1])]

(Wx[t] and b are omitted.)
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Gradient Flow in Recurrent Networks

Let A
def
=

∂y [t]

∂y [t−1]
be the temporal Jacobian, γ be a maximal bound on

f ′(Ry [t−1]) and σmax be the largest singular value of RT , we have

‖A‖ ≤ ‖diag [f ′(Ry [t−1])]‖‖RT‖ ≤ γσmax

• Vanishing gradients:

γσmax < 1

• Exploding gradients:

ρ > 1

where ρ is the spectral radius (supremum in |λ′s|) of A, since ‖A‖ ≥
ρ.
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Geřsgorin Circle Theorem (GCT)

For any square matrix A ∈ Rn×n

spec(A) ⊂ ∪i∈{1,...,n}{λ ∈ C|‖λ− aii‖C ≤
n∑

j=1,i 6=j

|aij |}

Possible Solution?

Initialize R with an identity
matrix and small random values
on the off-diagonals.

Zilly et al. ”Recurrent highway networks.” arXiv preprint arXiv:1607.03474 (2016).
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Recurrent Highway Networks
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c = 1n, t = 0n =⇒ λi = 1, ∀i ∈ {1, ..., n}

This can be done by coupling C and T : C = 1n − T
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Batch Normalized RHN
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Recall: Batch Normalization

Ioffe et al. ,”Batch normalization: Accelerating deep network training by reducing
internal covariate shift.” ICML, 2015.

ICIP 2017 #3118 09/18/2017 Batch Normalized Recurrent Highway Networks 9 / 17



Introduction
Related Work

Proposed Framework
Experiments

Conclusion
Rochester Institute of Technology

Image Captioning
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Image Captioning Results

Table: Evaluation metrics on
MSCOCO dataset.

Model LSTM RHN BN RHN

BLEU-1 0.706 0.618 0.710
BLEU-2 0.533 0.430 0.539
BLEU-3 0.397 0.291 0.404
BLEU-4 0.298 0.196 0.305
ROUGE-L 0.524 0.451 0.531
METEOR 0.248 0.181 0.252
CIDEr 0.917 0.520 0.964

Figure: The total loss change vs.
training steps.
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Image Captioning Results

(LSTM) a group of people standing around a parking
meter
(RHN) a group of people standing next to each other
(BNRHN) a young man riding a skateboard down a
street
(G.T.) a person is doing a trick on a skateboard

(LSTM) a red stop sign sitting on top of a metal pole
(RHN) a red stop sign sitting on the side of a road
(BNRHN) a stop sign with a street sign attached to it
(G.T.) Street corner signs above a red stop sign
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Image Captioning Results

(LSTM) a box with a donut and a cup of coffee
(RHN) a birthday cake with a picture of a dog on
it
(BNRHN) a plate with a doughnut and a cup of
coffee
(G.T.) A bag with a hot dog inside of it

(LSTM) a large brown dog sitting on top of a
wooden bench
(RHN) a statue of a cow with a bird on top of it
(BNRHN) a statue of a cow standing on top of a
wooden bench
(G.T.) A giant chair with a horse statue on it
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Image Captioning Results

(LSTM) a bus driving down a street next to a tall
building
(RHN) a group of people riding bikes down a street
(BNRHN) a city street filled with lots of traffic
(G.T.) A group of people walking down a sidewalk
near a bus

(LSTM) a cat sitting on a chair in a kitchen
(RHN) a cat sitting on a chair in a room
(BNRHN) a black and white dog standing in a
kitchen
(G.T.) A puppy is looking at a paper bag in the
kitchen
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Image Captioning Results – Negative

(LSTM) a rear view mirror of a car in the side
view mirror
(RHN) a rear view mirror on the side of a car
(BNRHN) a rear view mirror with a dog in the
side mirror
(G.T.) A guy takes a picture of his car’s rear view
mirror

(LSTM) a person sitting on a bench in a park
(RHN) a wooden bench sitting on top of a lush
green field
(BNRHN) a person sitting on a bench in a park
(G.T.) A woman standing next to a group of
horses on a field
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Conclusion

• We introduce a novel recurrent neural network model that is
based on batch normalization and recurrent highway networks.

• The analyses provide insight into the ability of the batch
normalized recurrent highway model to dynamically control
the gradient flow across time steps.

• This model takes advantages of faster convergence compared
to the original RHN.

• Experimental results on image captioning task reveals that our
proposed model achieves high METEOR and BLEU scores
compared to previous models on a modern dataset.
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Please feel free to contact us if you have any question.
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