Audio-Visual Attention: Eye-Tracking Dataset and Analysis ToolBox

Université de Mons

Pierre Marighetto, Université de Mons Antoine Coutrot, University College London Nicolas Riche, Université de Mons Nathalie Guyader, Université de Grenoble Matei Mancas, Université de Mons Bernard Gosselin, Université de Mons Robert Laganière, University of Ottawa

uOttawa

Problem

• Auditive attention is hard to evaluate alone

• Dynamic saliency maps are difficult to plot and evaluate

 Audio-visual saliency database are rare

Proposition

- New eye tracking dataset in audio and non audio conditions
- ToolBox to help analysis on eye tracking data on videos
- Comparison of eye tracking data in audio and non audio conditions

Dataset

Experiment status	Participants	Stimuli	Source
Already existing	40	50 videos from professional movies	Antoine Coutrot, Nathalie Guyader, Gelu Ionescu, Alice Caplier, et al., "Influence of soundtrack on eye movements during video exploration," Journal of Eye Movement Research, vol. 5, no. 4, 2012.
Already existing	72	60 videos	Antoine Coutrot, Nathalie Guyader, Gelu Ionescu, and Alice Caplier, "Video viewing: do auditory salient events capture visual attention?," Annals of Telecommunications, vol. 69, no. 1, pp. 89–97, 2014.
Already existing	40	15 videos extracted from the AMI Meeting Corpus	Antoine Coutrot and Nathalie Guyader, "An Efficient Audiovisual Saliency Model to Predict Eye Positions When Looking at Conversations ," in European Signal Processing Conference (EUSIPCO), Nice, France, 2015.
Original experiment	24	23 videos from Hollywood2	

Our Dataset

- 24 peoples watched 23 videos, with eye-tracking device pointing at them
 - Half of the videos were displayed with sound
 - Half of them were muted

• Example

• <u>https://youtu.be/Et8ea9nboE4</u>

Dataset

Final dataset contains 148 videos explored by a total of 176 participants, in different audio conditions The new dataset was split into 3 visual categories

- Moving objects
- Landscapes
- Faces

Give access to 5 metrics computed on every videos and each condition

Metrics are divided 3 categories

- Inter condition hybrid metrics
- Inter condition density comparisons
- Intra condition fixation comparisons

Metrics

Inter condition density comparisons

- Compares audiovisual and visual density maps
- Symmetric metrics (one result)
- 2 metrics
 - Pearson's Correlation Coefficient (CC)
 - Similarity

Inter condition hybrid metrics

- Compares density to fixation
- Asymmetrical metrics (2 results)
- 2 metrics
 - Kullback-Lieberg
 Divergence (KL-Divergence)
 - Normalized Scanpath Saliency (NSS)

Intra condition fixation comparisons

- Computes audiovisual and visual fixations
- Each condition is computed sparately (one result)
- 1 metric
 - Dispersion

Database Metrics

ъ

Analysis

Future works

• Add audio features extracted from the video

• Add video features extracted from the video

• Extend the ToolBox to different datasets

Thank you for your attention

- Contact
 - pierre.marighetto@gmail.com

- Project's website
 - <u>http://tcts.fpms.ac.be/attention/index.php?static06/projects</u>

