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Introduction

* Facial expressions can be seen as the changes on the face due to the responses of
our brain to social communication, emotions and intentions (Huang et al).
* We need to be able to recognize all types of emotions.
* To better understand the different types of the same emotions

Expression of one person might change at different times
and conditions.
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Framework

Framework Extract Macro- Concatenate
Representation pattern Features
Filter Noise | —» Lxtract Micro- Recognition
pattern




Framework

* We introduce a dual-view perspective using two faces simulating a
far-view and near-view.

We made the choice to filter the
noise as follows:

I =1 -y,

where I is the noisy patch and py denotes the mean

over the whole patch defined below: L Dual-view )
Y
N
1
Hr = ]V—-l Z(In) L J
n=0 Y

where N is the number of pixels in the patch, and I,

Framework
denotes the nt” expression pixel.

Chao, et al.,” Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection.”
Signal Processing. ‘15
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Macro pattern
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Macro pattern

* As the radius R increases, the number of non-graph nodes also increases, moving
the starting black node further away from the target pixel.

* We realize that pixels close to the target pixel often display similar features, and
pixels far away may display characteristics irrelevant to the target.

* Therefore, by increasing R gradually, we are able to collect neighbor-hood
information. o
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Macro-pattern
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- Better representation.
- Captures better information.
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Micro-pattern
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Micro-pattern
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Mic-Macro
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Labelling
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Encoded Representation
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Experiments and results
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Experiments and results

 Dataset:

* Japanese Female Facial Expression (JAFFE) ‘ ﬂﬂﬂ
* Cohn-Kanade (CK) .

Mubd Ay Lhgw
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ﬂﬂﬂﬂ
* Evaluation: ggg
zlzlzlalzlzls]
» k-fold cross validation. gialalalalals

* Leave one person out validation



experiments: jaffe

Using different radius R

!

10-fold cross validation

!

Radius RBF-kernel (%) Linear-kernel (%) Polynomial-kernel (%)

2

3

90.4762

95.2381

95.2381

97.6190

97.6190

86.6667

90.4762

97.6190

97.6190

95.2381

95.2381

95.2381

97.6190

97.6190

95.2381

Ref. Algorithm Recognition rate %
[25] BoostLBP 66.8
[9] Gabor filter 71.9
[25] LBP 72.4
[25] BoostLBP 74.2
[26] BoostLBP 81.0
36] LBP 83.25
34] LBP 85.71
1] SLGS 88.09
[17] ASM 89.5
[26] Gabor filter 91.0
[26] Gabor filter 91.9
[10] DCT+Gabor+Wavelets+Gasussian Distribution — 93.40
8] LBP 93.80
[4] LPQ+es-LBP-s 96.19
Proposed micro+macro 97.61




Experiments: JAFFE

Using different radius R Leave one out cross validation

! !

Radius RBF-kernel (%) Linear-kernel (%) Polynomial-kernel (%) [f;?]ﬂ éé%orithm geé:ognition rate %
30] Gabor histogram 58:7
2 54.7619 61.9048 55.6324 [11] LBP 62.9
3] CT 63.81
3 67.4242 70.4969 67.4242 [37] LBP 65.7
[37] LBP 65.71
[1] SLGS 66.66
4 72.0779 71.9697 72.0779 3] ASM 68.5
31] LBP+Gabor 70.0
5 79.6066 80.9524 77.2257 [32] Gabor filter 72.0
[33] MB-LGBP 74.18
[4] LPQ+-es-LBP-s 76.67

6 728778 72.87181 71.4286 Proposed micro+macro 80.95




Experiments and results

e 10-fold cross-validation on CK:
* 98%

* Processing Time:

* We used Matlab R2016b running on windows 10 with Intel Core i7 CPU at
3.60 GHz. The average computation time to extract the micro- and macro-
features for one facial image is 0.097 seconds.
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Conclusions

* Introduced a framework for facial expression.
* Encoded Mic-Macro patterns from salient patches.

* Proposed method outperforms existing method achieving 80.95% on leave-
one-out cross validation.
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