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PROBLEM
Bayer image b ∈ Rn and RGB x =

[rT , gT , bT ]T ∈ R3n. The image formation model
is

b = Ax+ η (1)

where A ∈ Rn×3n is the mosaic matrix which
down samples RGB image x to Bayer image b, and
η ∈ Rn is the noise vector.

Joint demosaicing and denoising can be
viewed as the inverse problem of (1)

min
x
∥Ax− b∥22 + T (x) (2)

where T (x) represents the prior functions.
This is a difficult problem due to limited infor-

mation, that is only 1/3 pixels are known.

CONTRIBUTIONS
We improve demosaicing and denoising by

1. Introducing hidden priors in minimization
model solved by ADMM

2. Combing multiple effective priors
3. Producing results with better performance

and robustness to noise

SOURCE CODE
The source code is available at github:

https://github.com/TomHeaven/Joint-
Demosaic-and-Denoising-with-ADMM.

RESULTS
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Fig. 1 Visual Results. The first row and the last two rows of images are from Kodak and McMaster

datasets, respectively. Each image is divided into four rectangular parts: Top-left, bottom-left, bottom-
right and top-right correspond to noise levels σ = 0, 5, 15, 25, respectively.

Table 1 Average PSNR Comparison on Two Datasets (dB)
Dataset Noise

Level
FlexISP
[1]

Deep
Joint
[2]

ADMM
(Ours)

Dataset Noise
Level

FlexISP
[1]

Deep
Joint
[2]

ADMM
(Ours)

Kodak
(24
images)

0 34.98 33.88 31.63 Mc-
Master
(18
images)

0 35.18 32.49 32.66
5 31.31 33.07 31.60 5 31.17 32.01 32.63
15 26.67 30.40 30.16 15 26.55 29.89 30.50
25 23.90 25.88 28.38 25 23.73 26.13 28.20
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METHOD
The image recovery model is specialized as

min
x
∥Ax− b∥22 + λtv∥∇x∥1 + λbm3dbm3d(x) + λcc∥Cx∥1 + λdmdemosaic(x) (3)

The above equation consists of one data term and four priors: total variation [3], bm3d denoising term
[4], cross-channel prior [5] and demosaicing prior [6].

Suppose we have a minimization problem with J terms

min
z∈Rd

J∑
j=1

gj(H
(j)z) (4)

where gj : Rpj → R are functions with closed form, H(j) ∈ Rpj×d are matrices and p = p1 + · · · + pJ .
The general steps solving problem (4) are

1. Initialize u0, d0, µ with zero vectors.
2. Start iteration

1: ζ
(j)
k ← u

(j)
k + d

(j)
k , j = 1, · · · , J

2: γk ←
∑J

j=1(H
(j))T ζ

(j)
k

3: zk+1 ← [
∑J

j=1((H
(j))TH(j))]−1γk

4: for j = 1 to J do
5: ν

(j)
k ← H(j)zk+1 − d

(j)
k

6: u
(j)
k+1 ← argminv

µ
2 ∥v − ν

(j)
k ∥22 + gj(v)

7: end for
8: d

(j)
k+1 ← d

(j)
k − (H(j)zk+1 − u

(j)
k+1), j = 1, · · · , J

Line 6 corresponds to a restoration problem with v as the data term and gj(v) as the prior term, which
suggests ADMM split a complicated minimization problem with multiple prior terms into multiple
simple minimization problems with only one prior term.


