
Department of Software

and IT Engineering

HIGHLY PARALLEL HEVC MOTION ESTIMATION BASED ON MULTIPLE TEMPORAL PREDICTORS
AND NESTED DIAMOND SEARCH

1. INTRODUCTION

� Fast search motion estimation (ME) algorithms are

extremely important to reduce the complexity of high

efficiency video coding (HEVC) encoding.

� Massively parallel architectures, such as GPUs, provide a

promising computing platform to calculate the best motion

vector (MV) of several blocks in parallel in order to

achieve fast encoding.

� Problem

� In rate-constrained ME (RCME), the best MV depends on

motion vector predictors (MVPs):

				P��	� ��∗, ��
∗

							� arg	min
∀��∈��������,

���∈ ����,����

D �� ! λ # R ��
 %��

These MVPs are derived from neighboring blocks already

processed. A parallel ME algorithm must be designed by

taking into account these dependencies.

� Fast search ME algorithms are iterative methods which

select different execution paths based on the result of cost

evaluations at each iteration.

� However, conditional algorithms are not executed

efficiently in GPUs because of their hardware design.

� Thus, a specifically designed algorithm for GPU is

required to achieve higher performance.

� Prior Art

� In [1], MVP is assumed to be always (0,0).

� In [2], the MVP is estimated by averaging MVs

collocated in the reference frame.

� [1] and [2] � reduced the rate-distortion (RD)

performance.

� In [2] and [3], ME algorithms for GPU have been

targeting exhaustive search algorithms such as full search,

but ignored fast search methods.

Esmaeil Hojati, Jean-François Franche, Stéphane Coulombe, Carlos Vázquez

3. NESTED DIAMOND SEARCH (NDS)

� Smallest execution unit in GPU is a wavefront/warp that

contains 64 parallel thread executing the same instruction.

� Designed for GPU architecture,

we define a nested fixed diamond

pattern consisting of 64 positions.

� RCME is performed in several

iteration by finding best MVs of

our fixed pattern.

� RCME for all possible PUs of a CTU (425 possible PUs)

are scheduled at the same time into the execution queue.

� Threads of a warp are being executed efficiently since

there is no diverged execution path and all of 64 threads of

each PU follow the same execution path.

� NDS for each PU is performed by one workgroup and

benefits from memory locality and cache performance.

� Sub-pel interpolation for the whole frame is performed in

the GPU.

4. EXPRIMENTAL RESULTS

� Methodology

� Software: Implementation in the HEVC test model HM15.0.

� Hardware: Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz,

equipped with an AMD Radeon R9-270 GPU.

� Encoder is set to “Low-delay P” configuration and

quantization parameters (QPs) of 22, 27, 32, and 37.

� Comparison is performed according to:

� Results

© ÉTS 2017

Algorithm 1. Proposed nested diamond search method kernel

1: WG ← get_group_id() ► PU index (idx)

2: WI ← get_work_id() ►Position idx in search pattern

3: PUjob ← PUArray[WG] ► PU size and position

4: SearchPos ← PosArray[WI]►Search position

5: BestMVI ← MVPi , iter ← 0

6: do
7: Center ← BestMVI

8: JME[WI] ← SAD(PUjob, Center + SearchPos)

9: BestMVI ← argmin(JME[0…63]) ► After barrier

10: Iter ← iter + 1

11: while (iter < 4 and abs(Center - BestMVI) ≥ 2)

12: BestMV = fractionalRefinement(BestMVI)

Video

BD-Rate (%) compared to
HM full search

Time Reduction (%) compared
to HM TZS

TZS
Zero-

FS
AVG-
FS

Zero-
NDS

AVG-
NDS

MTP-
NDS

Zero-
FS

AVG-
FS

Zero-
NDS

AVG-
NDS

MTP-
NDS

BasketballDrill
(832×480)

1.11 2.16 1.73 3.14 2.59 1.60 42.1 41.7 41.9 41.3 41.1

Flowervase
(832×480)

0.31 2.11 1.52 2.08 1.49 0.64 37.9 39.0 37.7 38.6 38.4

RaceHorses
(832×480)

1.08 2.97 2.28 3.80 3.39 2.56 38.9 37.8 38.5 37.5 37.6

FourPeople
(1280×720)

0.81 2.15 1.67 3.02 2.39 1.43 43.7 43.4 43.2 43.6 43.1

Johnny
(1280×720)

0.82 1.76 1.55 2.64 2.24 1.57 44.0 43.7 44.8 44.5 45.8

Cactus
(1920×1080)

0.47 2.63 1.99 2.66 2.01 1.29 43.7 42.7 43.5 42.9 42.9

Kimono
(1920×1080)

0.59 2.25 1.72 3.28 2.49 1.85 41.3 40.9 41.3 41.4 41.7

ParkScene
(1920×1080)

0.48 2.61 1.93 3.18 2.62 1.68 42.6 41.5 42.8 42.1 42.5

PeopleOnStreet
(2560×1600)

0.62 2.98 2.49 3.30 2.62 1.83 41.5 42.6 42.3 42.1 42.3

Average 0.70 2.40 1.88 3.01 2.43 1.61 41.74 41.48 41.78 41.56 41.71

Name

Param
TZS

Zero-FS
[1]

AVG-FS
[2]

Zero-

NDS
AVG-NDS MTP-NDS

MVP
Actual MVP
derivation

(0,0)
Collocated
Average

(0,0)
Collocate
d Average

Multiple
Temporal

RCME

method
TZS FullSearch

FullSearc
h

NDS NDS NDS

2. MULTIPLE TEMPORAL PREDICTORS (MTP)

� Perform RCME in two steps:

1- Use a list of MVP candidates, RCME data is calculated

in parallel in the GPU:

��& � arg	min
��∈��������	

D �� ! λ # R ��
& %��

P��'��
&(� 'D'��&(,��&(

��
& ∈)��
*, … ,��
,-

2- Best ./0 and ./1	is selected when actual ��
2 and

��
3 are available in RDO thread of CPU:

				P��	� ��∗, ��
∗ �

arg	min
��4, 5&67	&∈*…,,

���∈)����,����-	

D ��& ! λ # R ��
 %��&

� Using probable MVP candidate list, dependencies are

completely eliminated while RD is only slightly affected.

� All MVs from previously coded frame in co-located CTU

are selected as MVP candidates for the current PU.

� For a CTU of size 64x64, there are 16 temporal MVs

already stored in the encoder’s picture buffer and there is

no significant overhead in terms of memory.

[1] J. Ma, F. Luo, S. Wang, and S. Ma, “Flexible CTU-level parallel motion estimation by CPU and GPU

pipeline for HEVC,” Visual Communications and Image Processing Conference, 2014 IEEE. IEEE, pp. 282–

285, 2014.

[2] W. Chen and H. Hang, “H.264/AVC motion estimation implementation on compute unified device

architecture (CUDA),” IEEE Int. Conf. Multim. Expo, pp. 697–700, 2008.

[3] M. U. Shahid, A. Ahmed, and E. Magli, “Parallel rate-distortion optimised fast motion estimation

algorithm for H.264/AVC using GPU,” 2013 Picture Coding Symposium (PCS). IEEE, pp. 221–224, 2013.

5. CONCLUSIONS

� Proposed method achieves 41% time saving with 0.9% BD-Rate

increase compared to fast search method (TZS).

� GPU load is reduced from 86% for full search to 52% for our

proposed NDS method.

