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AND NESTED DIAMOND SEARCH 

1. INTRODUCTION

� Fast search motion estimation (ME) algorithms are

extremely important to reduce the complexity of high

efficiency video coding (HEVC) encoding.

� Massively parallel architectures, such as GPUs, provide a

promising computing platform to calculate the best motion

vector (MV) of several blocks in parallel in order to

achieve fast encoding.

� Problem

� In rate-constrained ME (RCME), the best MV depends on

motion vector predictors (MVPs):
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These MVPs are derived from neighboring blocks already

processed. A parallel ME algorithm must be designed by

taking into account these dependencies.

� Fast search ME algorithms are iterative methods which

select different execution paths based on the result of cost

evaluations at each iteration.

� However, conditional algorithms are not executed

efficiently in GPUs because of their hardware design.

� Thus, a specifically designed algorithm for GPU is

required to achieve higher performance.

� Prior Art

� In [1], MVP is assumed to be always (0,0).

� In [2], the MVP is estimated by averaging MVs

collocated in the reference frame.

� [1] and [2] � reduced the rate-distortion (RD)

performance.

� In [2] and [3], ME algorithms for GPU have been

targeting exhaustive search algorithms such as full search,

but ignored fast search methods.
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3. NESTED DIAMOND SEARCH (NDS)

� Smallest execution unit in GPU is a wavefront/warp that

contains 64 parallel thread executing the same instruction.

� Designed for GPU architecture,

we define a nested fixed diamond 

pattern consisting of 64 positions.

� RCME is performed in several 

iteration by finding best MVs of 

our fixed pattern. 

� RCME for all possible PUs of a CTU (425 possible PUs)

are scheduled at the same time into the execution queue.

� Threads of a warp are being executed efficiently since

there is no diverged execution path and all of 64 threads of

each PU follow the same execution path.

� NDS for each PU is performed by one workgroup and

benefits from memory locality and cache performance.

� Sub-pel interpolation for the whole frame is performed in

the GPU.

4.  EXPRIMENTAL RESULTS

� Methodology

� Software: Implementation in the HEVC test model HM15.0.

� Hardware: Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz,

equipped with an AMD Radeon R9-270 GPU.

� Encoder is set to “Low-delay P” configuration and

quantization parameters (QPs) of 22, 27, 32, and 37.

� Comparison is performed according to:

� Results
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Algorithm 1. Proposed nested diamond search method kernel 

1: WG ← get_group_id()        ► PU index (idx) 

2: WI ← get_work_id()              ►Position idx in search pattern 

3: PUjob ← PUArray[WG]     ► PU size and position  

4: SearchPos ← PosArray[WI]►Search position 

5: BestMVI ← MVPi  , iter ← 0 

6: do 
7:         Center ← BestMVI  

8:         JME[WI] ← SAD(PUjob, Center + SearchPos) 

9:         BestMVI ← argmin(JME[0…63])  ► After barrier 

10:         Iter ← iter + 1 

11: while (iter < 4 and abs(Center - BestMVI) ≥ 2) 

12: BestMV = fractionalRefinement(BestMVI) 
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2. MULTIPLE TEMPORAL PREDICTORS (MTP)

� Perform RCME in two steps:

1- Use a list of MVP candidates, RCME data is calculated

in parallel in the GPU:
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2- Best ./0 and ./1	is selected when actual ��
2 and

��
3 are available in RDO thread of CPU:
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� Using probable MVP candidate list, dependencies are

completely eliminated while RD is only slightly affected.

� All MVs from previously coded frame in co-located CTU

are selected as MVP candidates for the current PU.

� For a CTU of size 64x64, there are 16 temporal MVs

already stored in the encoder’s picture buffer and there is

no significant overhead in terms of memory.
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5. CONCLUSIONS

� Proposed method achieves 41% time saving with 0.9% BD-Rate

increase compared to fast search method (TZS).

� GPU load is reduced from 86% for full search to 52% for our

proposed NDS method.


