

Mixed Sparsity Regularized Multi-view Unsupervised

Feature Selection

Kennedy W. Wangila Ke Gao Pengfei Zhu*

Qinghua Hu Changqing Zhang

School of Computer Science and Technology Tianjin University, China zhupengfei@tju.edu.cn

September 20, 2017

- 2. Multi-view Feature Selection
- 3. Mixed Sparsity Regularized Feature Selection
- 4. Experiment
- 5. Conclusion

- 2. Multi-view Feature Selection
- 3. Mixed Sparsity Regularized Feature Selection
- 4. Experiment
- 5. Conclusion

text mining

computer vision

video understanding

bio-informatics

(a) UC IRVINE MACHINE LEARNING REPOSITORY				(c) LIBSVM DATABASE				
APPLICATION DOMAIN	DATA NAME	DIMENSION	YEAR	APPLICATION	DOMAIN	DATA NAME	DIMENSION	YEAR
ACOUSTICS	ISOLET	617	1994	IMAGE		USPS	256	1994
GAME	CHESS	36	1989			GISETTE	5,000	2003
	CONNECT-4	42	1995	LIFE SCIENCE	LEUKEMIA	7,129	1999	
IMAGE	LETTER	16	1991		COLON-CANCER	2,000	1999	
	COREL	89	1999			BREAST-CANCER	7,129	2001
LIFE SCIENCE	SOYBEAN	35	1987	TEXT	TEXT	NEWS20	62,061	1995
	MOLECULAR	58	1990			REAL-SIM	20,958	1998
	MAMMALS	72	1992			SECTOR	55,197	1998
	SPECTF	44	2001		RCV1	47,236	2004	
	P53	5,409	2010			NEWS20.BINARY	1,355,191	2005
MULTI-VIEW	INTERNET AD	1,558	1998			WEBSPAM	16,609,143	2006
PHYSICS	SPECTROMETER	102	1988			SIAM	30,438	2007
	H.O TREAT. PLANT	38	1993		LOG1P	4,272,227	2009	
SOCIOLOGY	INSURANCE	86	2000	EDUCATION		KDD2010	29,890,095	2010
TEXT	BAG OF WORDS	100,000	2008		-			
	URL	3,231,961	2009					
TIME-SERIES	PEMS-SF	138,672	2011			Curse of		
	GAS SENSOR	1,950,000	2013		Dim	ensionality	\leq	
VIDEO	YOUTUBE MVG	1,000,000	2013	\geq		onoronarrey		

• Zhai Y, Ong Y S, Tsang I W. The Emerging" Big Dimensionality"[J]. IEEE Computational Intelligence Magazine, 2014, 9(3): 14-26.

http://archive.ics.uci.edu/ml/

Correlations between feature pairs using a 2D correlation matrix

The evolution (rise) of feature dimensionality in correlation matrices.

- (a) Diabetes (8 features)
- (b) Lung Cancer (56 features)
- (c) Psoriasis (529,651 features)

[•] Zhai Y, Ong Y S, Tsang I W. The Emerging" Big Dimensionality"[J]. IEEE Computational Intelligence Magazine, 2014, 9(3): 14-26.

D Problem

Time and storage

The high-dimensionality data always contain a plenty of redundant data and noise, which may leads to high time complexity, large storage burden.

Generalization ability

The high-dimensional data may increase the number of parameters of the learning machines, and therefore easily lead to over-fitting and degradation of the generalization ability.

Solution

Subspace learning:

Subspace learning is one of the most effective ways to eliminate the curse of dimensionality by projecting the data to a low-dimensional feature subspace.

Feature selection:

Feature selection directly selects a subset of relevant and most representative features. And it is also an effective technique to reduce storage burden and time complexity, and improve generalization ability of the learned.

□ Feature selection

Filter Methods

Filter method based on general features like the correlation with the variable to predict.

e.g. variance, Laplacian Score, consistence

Wrapper Methods

Wrapper Methods evaluate subsets of variables which allows to detect the possible interactions between variables.

e.g. R-SVM, SVM-RFE

Embedded Methods

Embedded methods takes advantage of its own variable selection process and performs feature selection and classification simultaneously.

e.g. EUFS

[•] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Machine learning, 2002, 46(1): 389-422.

2. Multi-view Feature Selection

3. Mixed Sparsity Regularized Feature Selection

- 4. Experiment
- 5. Conclusion

(a) The Concatenating Strategy

[•] Tang J, Hu X, Gao H, et al. Unsupervised Feature Selection for Multi-View Data in Social Media[M]// Proceedings of the 2013 SIAM International Conference on Data Mining. 2013.

• Shi H, Li Y, Han Y, et al. Cluster structure preserving unsupervised feature selection for multi-view tasks[J]. Neurocomputing, 2016, 175(PA):686-697.

(a) The Concatenating Strategy

 Tang J, Hu X, Gao H, et al. Unsupervised Feature Selection for Multi-View Data in Social Media[M]// Proceedings of the 2013 SIAM International Conference on Data Mining. 2013.

(a) The Concatenating Strategy

(b) The Separation Strategy

[•] Tang J, Hu X, Gao H, et al. Unsupervised Feature Selection for Multi-View Data in Social Media[M]// Proceedings of the 2013 SIAM International Conference on Data Mining. 2013.

(a) The Concatenating Strategy

(b) The Separation Strategy

$$\min_{\mathbf{W},\mathbf{Z}} \quad \mathcal{J}(\mathbf{W},\mathbf{Z}) = \sum_{i=1}^{m} \lambda_i (Tr(\mathbf{Z}^{\top} \mathbf{L}_i \mathbf{Z}) + \alpha(\|\mathbf{X}_i^{\top} \mathbf{W}_i - \mathbf{Z}\|_F^2 + \beta \|\mathbf{W}_i\|_{2,1}))$$
$$s.t. \quad \mathbf{Z}^{\top} \mathbf{Z} = \mathbf{I}, \qquad \mathbf{Z} \ge 0.$$

• Tang J, Hu X, Gao H, et al. Unsupervised Feature Selection for Multi-View Data in Social Media[M]// Proceedings of the 2013 SIAM International Conference on Data Mining. 2013.

- 2. Multi-view Feature Selection
- 3. Mixed Sparsity Regularized Feature Selection
- 4. Experiment
- 5. Conclusion

3. Mixed Sparsity Regularized Feature Selection

□ Mixed Sparsity Regularized Learning

 $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_i, \dots, \mathbf{X}_m] \in \mathbb{R}^{d imes n}$ $\mathbf{X}_i \in \mathbb{R}^{d_i imes n}$ $\mathbf{P} \in \mathbb{R}^{d imes r}$

$$\min_{\mathbf{P}^T\mathbf{P}=\mathbf{I}}\sum_{i=1}^m \sqrt{Tr(\mathbf{P}^T\mathbf{X}\mathbf{L}_i\mathbf{X}^T\mathbf{P})} + \lambda R(\mathbf{P})$$

Feature level:

■ View level:

$$\|\mathbf{P}\|_{2,1} = \sum_{i=1}^{d} \|\mathbf{p}_i\|_2 = \sum_{i=1}^{d} \sqrt{\sum_{j=1}^{r} p_{ij}^2} \qquad \qquad \|\mathbf{P}^i\|_F = \sqrt{\sum_{j=1}^{d_i} \|\mathbf{p}_j^i\|_2^2} = \sqrt{\sum_{j=1}^{d_i} \sum_{k=1}^{r} (p_{jk}^i)^2}$$

$$\min \sum_{i=1}^{m} \sqrt{Tr(\mathbf{P}^T \mathbf{X} \mathbf{L}_i \mathbf{X}^T \mathbf{P})} + \lambda_1 \|\mathbf{P}\|_{2,1} + \lambda_2 \sum_{j=1}^{m} \|\mathbf{P}^j\|_F$$

s.t. $\mathbf{P}^T \mathbf{P} = \mathbf{I}$

3. Mixed Sparsity Regularized Feature Selection

■ Parameter-free Multi-view Learning

$$\min \sum_{i=1}^{m} \sqrt{Tr(\mathbf{P}^T \mathbf{X} \mathbf{L}_i \mathbf{X}^T \mathbf{P})} + \lambda_1 \|\mathbf{P}\|_{2,1} + \lambda_2 \sum_{j=1}^{m} \|\mathbf{P}^j\|_F$$
s.t. $\mathbf{P}^T \mathbf{P} = \mathbf{I}$

Lagrange Multiplier Method

$$\sum_{i=1}^{m} \sqrt{Tr(\mathbf{P}^{T}\mathbf{X}\mathbf{L}_{i}\mathbf{X}^{T}\mathbf{P})} + \lambda_{1} \|\mathbf{P}\|_{2,1} + \lambda_{2} \sum_{j=1}^{m} \|\mathbf{P}^{j}\|_{F} + G(\Lambda, F)$$

$$\sum_{i=1}^{m} \alpha_{i} \frac{\partial Tr(\mathbf{P}^{T}\mathbf{X}\mathbf{L}_{i}\mathbf{X}^{T}\mathbf{P})}{\partial \mathbf{P}} + \lambda_{1} \frac{\partial \|\mathbf{P}\|_{2,1}}{\partial \mathbf{P}} + \lambda_{2} \frac{\partial \sum_{j=1}^{m} \|\mathbf{P}^{j}\|_{F}}{\partial \mathbf{P}} + \frac{\partial G(\Lambda, F)}{\partial \mathbf{P}}$$

$$\alpha_{i} = 1 \Big/ \Big(2\sqrt{Tr(\mathbf{P}^{T}\mathbf{X}\mathbf{L}_{i}\mathbf{X}^{T}\mathbf{P})} \Big)$$

$$(\text{View 1} (\text{View 1} (\text{View 2} (\text{View 1} (\text{View 2} (\text{View m} (\text{V$$

(d) Mixed Sparsity Regularized Feature Selection

- 2. Multi-view Feature Selection
- 3. Mixed Sparsity Regularized Feature Selection

4. Experiment

5. Conclusion

4. Experiment

□ Settings:

- Clustering accuracy
- Clustering NMI

Datasets:

DATA	Smaples	view	Features	Classes
Caltech10	800	4	200, 512, 59, 680	10
Corel800	800	4	200, 512, 59, 680	10
flickr	1000	4	200, 512, 59, 680	10
mfeat	2000	6	216, 76, 64, 6, 240, 47	10
PPMI	1400	3	200, 200, 200	7
MSRA	210	5	1302, 512, 256, 210, 100	7
Still DB	467	3	200, 200, 200	6

4. Experiment

Experiment Results:

Clustering accuracy result of all data sets

DATA	Laplacian	SPEC	MCFS	UDFS	AUMFS	MSMFS
Caltech10	0.2562	0.2223	0.2873	0.2887	0.3205	0.3444
Corel800	0.2986	0.2514	0.2851	0.2702	0.2913	0.3073
flickr	0.2146	0.2086	0.2369	0.2262	0.2288	0.2360
mfeat	0.5608	0.6416	0.6242	0.6538	0.6129	0.7105
PPMI	0.1969	0.2180	0.1987	0.2005	0.1989	0.2366
MSRA	0.5099	0.4786	0.5390	0.5155	0.5110	0.6746
Still DB	0.3013	0.2857	0.3004	0.3017	0.3124	0.3004

Clustering NMI result of all data sets

DATA	Laplacian	SPEC	MCFS	UDFS	AUMFS	MSMFS
Caltech10	0.1461	0.0962	0.1734	0.1767	0.2059	0.2199
Corel800	0.2198	0.1235	0.2255	0.1960	0.2302	0.2400
flickr	0.0993	0.1026	0.1353	0.1184	0.1309	0.1279
mfeat	0.5699	0.5960	0.6157	0.5983	0.5920	0.6253
PPMI	0.0224	0.0310	0.0255	0.0194	0.0238	0.0461
MSRA	0.4076	0.3902	0.4467	0.4100	0.4122	0.5915
Still DB	0.1019	0.0850	0.0930	0.0951	0.1035	0.1051

- 2. Multi-view Feature Selection
- 3. Mixed Sparsity Regularized Feature Selection
- 4. Experiment
- 5. Conclusion

5. Conclusion

□ Automatically learning the view weights.

□ Alleviate the effect of the outlier views and features with noisy information.

Thank you! Q&A

