IEEE ICIP 2017

Efficient estimation of target detection quality

Juan C. SanMiguel

Escuela Politécnica Superior Universidad Autónoma de Madrid

www-vpu.eps.uam.es/~jcs

@jc_sanmiguel

Andrea Cavallaro

Centre for Intelligent Sensing Queen Mary University of London

www.eecs.qmul.ac.uk/~andrea

@smartcameras

Introduction: multi-camera processing

Fields of view (and data) are projected to a common plane for multi-camera processing

Images credit: http://www.cvg.reading.ac.uk/PETS2009/

What is detection quality?

- Detecting targets is key for many multicamera approaches
- Detection quality
 - models the miss-detection rate
 - related to the probability of a target to be detected within the FOV
 - accounts for the number of undetected targets over time

Field Of View (FOV) models

- FOV projection
 - geometrical properties of the FOV
 - widely accepted abstraction: projection onto a plane
- Shape of the FOV projection
 - square (aerial views)
 - enable fast computation of detection quality
- triangular (pinhole camera)
 - more common
 - does not lend itself to fast computation

Detection quality for triangular FOVs

- Main ideas of our proposal ullet
 - mapping the problem to a definite integral considering uncertainty
 - integration domain: represents the FOV
 - integral: numerically approximated by combining quadrature-based integration and importance sampling

Proposal: overview

Pipeline to estimate detection quality via integration

Proposal (1/4)

- Quadrature decomposition
 - Integration of detection uncertainty $f(z_i)$
 - Gaussian quadrature: tabulated weights w_r and normalized \hat{z}_r

$$\int_{\Omega_i} f(z_i) d\boldsymbol{x} \approx \sum_{r=1}^N w_r f(\hat{z}_r)$$

a weighted sum of N function values at specified points \hat{z}_r within the domain of integration

Proposal (2/4)

- Optimal size selection
 - Number of samples to integrate according to
 - FOV size *FOV*_i
 - detection uncertainty Σ
 - Heuristic minimization approach

Proposal (3/4)

- Importance sampling
 - place higher density of samples where integrand is large
 - location uncertainty for targets handled by covariance matrix
 - such covariance may guide the location of quadrature samples
 - it can be approximated by a polygon: an ellipse

Proposal (4/4)

- Transformation and evaluation
 - adapt the coordinates of selected samples to the desired FOV
 - affine transformation $X = T \cdot A$ to obtain samples in FOV
 - transformation *T* is found by $T = X \cdot A^{-1}$

$$\begin{bmatrix} t_1 & t_2 & t_3 \\ t_4 & t_5 & t_6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 1 & 1 & 1 \end{bmatrix}^{-1}$$

Evaluation on multi-target tracking

- Task
 - to estimate detection quality P_D
 - monitored área: 500x500
 - 8 cameras
 - triangular FOV projection
 - target state vector: position and velocity
 - Gaussian models for uncertainty
 - results over $6 \cdot 10^5$ runs

FOV

Detection quality: accuracy

- Compared vs. quadrature number integration with N samples
- Performance measure
 - average estimation error: reference value found by evaluating

all locations in FOV Ω_i (high comp. cost)

Detection quality: cost

- Compared vs. quadrature number integration with N samples
- Performance measure
 - average relative cost
 - reference value: by evaluating all locations in FOV Ω_i

Detection quality: uncertainty

- Uncertainty models
 - 6 uncertainty hypotheses

Detection quality: comparison

- Compared methods \bullet
 - UG: Uniform Grid sampling
 - low accuracy | fast computation MC: Monte Carlo sample generation high accuracy | costly

Application to tracking

- Comparison vs. MTIC multi-camera multi-target tracker
 - Information Consensus for distributed target tracking
 - detection quality P_D employed for JPDAF data association
 - cumulative distribution function of the target location

MTIC: Distributed multi-target tracking and data association in vision networks A. Kamal, J. Bappy, J. Farrell, and A. Roy-Chowdhury,

IEEE Trans. on Pattern Analysis and Machine Intelligence, 38(7):1397-1410, Jun 2016

Evaluation: application to tracking (side note)

- Joint Probabilistic Data Association Filter for multiple targets
 - for each target T^{j} , the mean measurement y^{j} is computed from all the measurements z_{n} and the association probabilities β^{jn}

Bar-Shalom, Daum, Huang, The probabilistic data association filter, IEEE Control Systems, 2009 17/20

Evaluation: application to tracking

- MTIC improvement: consider realistic FOVs (triangular)
- Four different levels of clutter (affect miss-detection rate)
- Comparison against typical constant *P*_D values of literature

Conclusions

- Contribution
 - generic estimator for target detection quality
 with quadrature-based integration & importance sampling
 - closed-form function empirically derived to determine optimal number of integration points
 - results
 - + accuracy
 - computational cost
 - application to multi-camera multi-target tracking
 - improves tracking performance & accuracy-complexity trade-off
- Future work
 - extension to color features

WiSE-Mnet simulator for distributed computer vision

- Models: communication layers, sensing and distributed applications of camera networks (resource constraints)
- Networks capturing complex vectorial data (e.g. video)
- Includes implementations of state-of-the-art algorithms

www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

