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Introduction

From Fig. 3 we can see that, reconstructed images based on the CG and BP network

methods contain a lot of artifacts, by contrast, the new framework we proposed is much

better. In addition, the results indicate that the new framework can more clearly reflect the

edge of the object compared with BP network method, while the reconstructed images

based on the CG method can not accurately reflect the edge contours of the object inside

the sensing field.

Fig. 3. Reconstructed images of different shape objects by using the three methods.
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Conclusion
In this paper, a new image reconstruction framework for EIT based on

DNN with SAE is implemented. Simulation and experimental results have

shown that the DNN model trained with simulation data not only can be

used to obtain the reconstruction results of the simulation data, but also

can be used to obtain reconstruction results of the experimental data. In

addition, compared with other methods in this paper, the proposed

framework has an obvious advantage in quality of reconstructed images.

In the future work, we will increase the training samples and find the

optimal parameter settings to compare the new framework with other

methods.
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Electrical impedance tomography (EIT) is a novel noninvasive imaging technology in which

electrodes are placed on the surface of the unknown object and the interior impedance of an object is

reconstructed from voltage data arising from currents applied on the electrodes. Due to the

advantages of being non-radiant and non-intrusive, rapid response and low cost, EIT has wide

foreground for application in the field of clinical monitoring and industrial measurement.

Since the main difficulties of EIT are the limited number of sensing electrodes and the non-linear

property of the field, the image reconstruction for EIT is a typical non-linear and ill-posed inverse

problem. Traditional methods of image reconstruction for EIT include Landweber iteration method ,

the conjugate gradient (CG) method, Tikhonov regularization method and so on. Compared with the

traditional methods, the shallow neural network is easier to implement and has lower computational

demands, such as Hopfield neural network , Radial Basis Function neural network and Back

Projection (BP) network have been widely used for image reconstruction. Because the ability of deep

neural network (DNN) to represent complex functions is stronger than that of shallow neural network,

there have been a number of initial attempts at using DNN for medical image reconstruction in recent

years, such as in CT and MRI .

In this paper, we propose a new image reconstruction framework based on DNN for EIT. A 4-layer

DNN based on the stacked autoencoder (SAE) is trained to establish the nonlinear mapping between

the voltage measurements and the inner conductivity distribution. Thus we can directly use voltage

measurements through the trained DNN model to estimate conductivity distribution which is used to

reconstruct image of EIT. In this way, the DNN can simplify the mathematical formulation without

requiring any approximate linearization.

The theory of EIT problem includes the forward and the inverse problem. The forward problem is to

calculation of voltage measurements according to the known conductivity distribution of given

object and applied current value. The most common method to obtain numerical solution of EIT

forward problem is Finite Element Method (FEM). And the deterministic observation model of EIT

can be expressed as

(1)

In this paper, we used the proposed framework to estimate the conductivity distribution of two

kinds of simulation models. The DNN model was trained with four layers, and the number of nodes

in each layer was {208,150,150,812}. In the pre-training stage, the learning rate was set to 1 for

each layer, the training epochs was 100 and the batch-size was 10. In the fine-tuning stage, the

learning rate was set to 2 for each layer, the batch-size was 40 and the number of iterations was

100. The test sets were used to obtain the estimations of the conductivity distribution through the

trained network. The reconstructed images presented the conductivity distribution by using a mesh

with 812 square elements. The performance of this reconstruction technique is compared with the

CG method and BP network method on simulated data, as shown in Figure 3.

An EIT system with 16 electrodes is employed to reconstruct the interior conductivity distribution. Numerical simulations were carried out to evaluate

the performance of the proposed framework. In this paper, we used COMSOL software to create a set of models of different conductivity distributions

based on Finite Element Method (FEM) and to obtain boundary voltages, as shown in Fig.1 (a). Due to the measured voltages were simulated using

the complete electrode model and adjacent current patterns, there are 208 measured voltages, which constitute the input vector for the DNN model.

The image is reconstructed with 812 pixels digitized image in a grid with square elements.

In order to verify the validity of the new framework for EIT imaging, we used the geometry of object as a priori information for the DNN model. We

designed two kinds of simulation models with circular and square objects. Each kind of objects have 2000 different positions, which are evenly

distributed in the field. Therefore, each kind of simulation model has 2000 different impedance distribution models for training. Furthermore, objects

of each shape have 100 different conductivity distribution models for testing, whose positions are without in the training set. The finite element

simulation method is used for numerically simulate the data sets for DNN. Before training, we added the Gaussian noise to voltage measurements and

normalize the data sets first. The DNN based on SAE was created and trained using Deep Learning Tolbox in MATLAB.
Where is a vector of the voltage measurements, is the forward model mapping the

conductivity distribution and injected current vector to the boundary voltage vector , is

the model mapping conductivity to resistance.

The inverse problem is also called image reconstruction. When the changes in conductivity

distribution are small, this problem can be estimated by considering the linearized equation system as

follows:

(2)

Where ( is the number of independent voltage measurements) is the change of perturbation

of boundary voltage, (n is the number of pixels of the reconstructed image), and is the

Jacobian matrix. As the matrix in (2) is usually neither square nor full rank, image reconstruction for

EIT is a typical ill-posed inverse problem, in which a solution either does not exist or is not unique or

unstable. This is a reason we choose DNN to avoid solving the Jacobian matrix.

In this section, the SAE combined with the logistic regression (LR) layer constitutes the entire DNN model.

The working principle of imaging reconstruction for EIT based on DNN contain two parts, one is using

training set to train the DNN model, another one is using test set through the trained DNN model to obtain the

test result which is used for image reconstructions, as illustrated in Fig. 1.
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Fig. 1. The working principle of imaging reconstruction for EIT based on DNN. (a)

Finite element simulation model is used for numerically simulate the data set. (b) The

DNN model based on SAE. (c) A test result is used to reconstruct the image of EIT
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The stacked autoencoder, referred to as the SAE in this paper, consists of a series of autoencoders which are

stacked on top of each other. A typical autoencoder is a neural network consisting of three fully connected

layers which are the input layer, the hidden layer, and the output layer, as shown in Fig. 2(a). Given a set of

training samples as the input (M is the number of training samples), where (m

is the number of input layer neurons). The input value can be represent by , and the weight matrix

components expressed as with and , where is the number of hidden

layer neurons. The autoencoder transforms input vector to hidden vector via the encoder . In this study

we used the logistic sigmoid function as follow:

(3)

The hidden layer neurons output, called encoding, is obtained by the following formula:

where is the bias of the hidden layer neuron . The autoencoder attempts to reconstruct input vector via

the decoder to produce reconstruction vector . The output layer values, also called the decoding, is given

by
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here, is a loss function. The Gradient Descent method used to update weight matrices and bias vectors

according to formulas (7), where represents the learning rate.

The DNN model based on SAE used in our study is constructed by several autoencoder layers and a LR

layer. The working principle of the SAE is illustrated in Fig. 2(b).

A SAE is a network combining together the hidden layers of subsequent autoencoders, that is, the output

layer of the previous autoencoder is discarded after training, and the output of the hidden layer as the input

of another autoencoder. Each hidden layer is a higher-level abstraction of the previous layer, therefore the

last hidden layer contains high-level structure and representative information of the boundary voltage

measurements, which are more effective for estimating the conductivity distribution.

To employ the DNN model based on SAE for estimating the conductivity distribution, the real-value of

conductivity must be added on the top layer. In this paper, a logistic regression (LR) layer is embedded as an

output layer into the network for estimation of the true conductivity distribution.

An experimental study was performed using the EIT system with 16 electrodes.

In the experiment, The EIT imaging domain was set up by using a cylindrical

container filled with tap water. A plastic rod was placed at 100 different

positions in the imaging region, therefore 100 samples of voltage

measurements are obtained as a new test set. The radius ratio of the cylindrical

container to the plastic rod was consistent with the above circular simulation

model. We used the new test set to test the DNN model, which was trained by

the training set of the circular simulation model described in section 4.1 above,

and the reconstruction results compared with CG method are shown in Fig. 4.

Experiments show that the DNN model can obtain reconstructed results of the

experimental data by training the simulation data.
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To evaluate the performance of the proposed model, we adopted the mean-

squared error (MSE), which is calculated as follows:

Where denotes the true conductivity distribution and denotes the

estimation of the conductivity distribution. The average mean-squared errors of

the three methods are shown in Table I.

Simulation model

Average MSEs

CG 
method

BP network

method

The DNN 
framework

Circular object 0.0968 0.0327 0.0083

Square object 0.0529 0.0304 0.0271

The simulation results displayed in Table I also demonstrated that the DNN

framework performs best.

Table I. Average MSEs of different methods for simulation

The training procedure contains the SAE pre-training and fine-tuning steps. Before the pre-training step, we have to do some preparation, first, we

obtain the training set by the finite element simulation model, the training set consists of samples of voltage measurements and samples of

corresponding conductivity distributions. The input samples for training the model are a set of normalized voltage measurements, which is denoted by

( is the number of training samples ), where ( is the number of independent voltage measurements). The

output samples for training the model are a set of normalized corresponding conductivity distributions, which is expressed as ,in

which ( is the number of pixels of the reconstructed image). So that we can get the relationship between the voltage measurements and

the inner conductivity distribution. Then the number of hidden layers is preset to layers, the number of nodes is preset in each hidden layer, and the

network parameters including the training epochs, the learning rate, the batch-size and the number of iterations are initialized. At last, some prior

information (shape, size, position of the object, etc.) is added to the network. The training procedure is based on the studies by Hinton et al. and

Bengio et al. In the pre-training stage, we initialize the weight matrices and bias vectors randomly. Then is used as input to train the first hidden

layer, the successive hidden layers are trained in a greedy layer-wise manner while using the output of the previous hidden layer as the input of the

next hidden layer. In the fine-tuning stage, we use the output of the last hidden layer as the input for the LR layer and randomly initialize .

The backpropagation (BP) algorithm with the gradient-based optimization technique is used to update the whole network’s parameters in a top-down

manner.

In order to obtain the reconstructed image of the EIT, the test set is used to verify the validity of the trained DNN model. The test set includes the

untrained samples of voltage measurements, and is expressed as ( is the number of test samples ), in which ( is the

number of independent voltage measurements). is the input for testing the trained DNN model, and the test result is regarded as the estimations of

conductivity distributions. This result can be expressed as ,where ( is the number of pixels of the reconstructed

image) is used to reconstruct image by a mesh with square elements, as shown in Fig.1(b) and (c).

Fig. 2. The basic structure of DNN model. (a) A basic schema of an

autoencoder. (b) The structure of the SAE used in this study. It contains an

input layer, two hidden layers, and an output layer.
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here, is the bias of the output layer neuron , The parameters of this neural network are optimized to

minimize the average reconstruction error
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