TOWARDS THINNER CONVOLUTIONAL NEURAL NETWORKS

THROUGH GRADUALLY GLOBAL PRUNING
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EXPERIMENT RESULTS

« Pruning VGG-like network for CIFAR-10 classification(Prop.
for “proportional pruning neurons in each layer, not

faced with resource-limited devices. To handle this parameter in the filter. We omit indexes for simplicity. proposed.”)
problem, we propose a pruning scheme for neuron level - The imbalance of scores in different layers —
pruning, in which the redundant neurons were selected name  org, R o(R) AAWS Prop.
globally in the network. Our scheme could automatically o ot on s e convl_1 64  35(547%)  3(47%)  33(51.6%)  45(70.31%)
find a thinner network structure with a given N T e e | e I Sy convl 2 64  52(813%)  14Q21.9%)  34(53.1%)  45(70.31%)
performance. A N itk I i conv2_1 128  85(66.4%)  T0(54.9%)  83(64.8%)  89(69.5%)
L i | o | | mm— ' comv2.2 128  72(56.3%)  70(54.9%) 128(100.0%)  89(69.5%)
T e T S e convd_l 256 93(36.3%)  168(65.6%)  254(99.2%)  179(69.9%)
(a) R scores (b) o(R) scores (c) AAWS scores
INTRODUCTION conv32 256 173(67.6%)  194(75.8%) 256(100.0%) 179(69.9%)
el se . pninder oSS e o ——— M conv3_3 256 169(66.0%)  218(85.2%) 256(100.0%)  179(69.9%)
— b — b i — bt o | convd_l 512 257(50.2%) 314(61.3%) 486(94.9%)  357(69.7%)
: | 42 512 405(79.1%)  395(77.1%)  500(97.7%)  357(69.7%)
- Three types of current pruning methods AL o
yP o . P g. . - " convd 3 512 490(95.7%) 382(74.6%) 448(87.5%)  357(69.7%)

- Approximation: Weight matrices and tensors in deep R 5w convs.1 512 46801.4%) 452(883%) 321(627%)  357(69.7%)
model could be apprOXImated using tensor (d) R scores after modification (e) o(R) scores after modification  (f) AAWS scores after modification convs 2 519 136(85.2%) 434(84.8%)  276(53.9%)  357(69.7%)
decom.pos.ltlon technlqu.es. . o Fig. 1: The score distribution of different metrics convS_3 512 398(77.7%)  397(77.5%)  229(44.7%)  357(69.7%)

- Quantization: By searching or constructing a finite set for fel 512 17734.6%)  19938.9%)  6(12%)  357(69.7%)
candidate parameters, one could map parameters from . . . | | ' |
real numbeFl? to several candidates PP ° Ad_]USt scores in different |ayers for feasible g|oba| total 4736  3310(69.9%) 3310(69.9%) 3310(69.9%) 3304(69.8%)

. runing. acc.  87.32%  84.35% 81.88% 86.89% 86.54%

« Pruning: Reduce redundant connections, neurons or P 7 S(, D)
entire layers of the model. Smodifiea(l,1) = ,

Drun hods in diff aritiec lejf’zlos(z,j) « Pruning VGG network for Kaggle cat/dog
* Pruning methods In difterent granularities: ] classification(transfer learning)

- Layer-level: Shallower networks FRAMEWORK

« Neuron-level: Thinner networks

+ Connection-level: Sparser networks fldme - ofg. neurons flame OIE. neurons
: Algorithm 1 ly global pruning scheme.

- Main problems gorithm 1 Gradually global pruning scheme convl 1 64 28(43.8%) comvd3 512 512(100.0%)
H | he | f Input: A trained Model: M
* How to evaluate the importance of a neuron Given performance target: P, convl 2 64 28(43.8%) conv5_l 512 512(100.0%)
* How to conduct the pruning process Contribution score evaluator: E(:) conv2_1 128 59(46.1%) conv5.1 512 512(100.0%)
. ' _ Pruning ratio generator: r
We rfefer neuron af a.nodle in fu”yk connected networks Iraining set: X comv22 128 74(57.8%) comv52 512 512(100.0%)
or a tiiter in convolutional networks. Lo
Validation set: V' conv3_l 256 169(66.1%) conv5_3 512 506(98.8%)
Output: A thinner model: M
1 Compute the performance P, of M using V conv3d_2 256 192(75.0%) fcl 4096  4096(100.0%)
METHOD 2: while P,, > P; do conv3_3 256 216(84.4%) fc2 4096 392(9.6%)
: : ’ gﬁfﬁllézzut;irc%ﬂ(t'f)lbutlOl’l seores of all neurons In convd_1 512 495(96.7%) total 12416  8302(66.9%)
* Redundant neurons selection ( neuron importance Sort the scores convvd2 512 511(99.8%) acc.  98.24%  97.22%

evaluation )

5. Select N xr neurons to be prune, where /V 1s the num-
ber of neurons in current model
6:  Drop the selected neurons in the network, get M g0y,
update M by Mg,op
Sr(Li1) =X Ry 7. Fine-tune M with training set X
- Standard derivation of activations: g8:  Update P, by the performance of M over V

9: end while
N Rl?._ﬁ . ,
Se(l, 1) =\/ ]_1(1\/] ) 10: return N

[ = layer index,i = neuron index, N = #neurons in a layer

« Mean of activations:
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