

TOWARDS THINNER CONVOLUTIONAL NEURAL NETWORKS THROUGH GRADUALLY GLOBAL PRUNING

ABSTRACT

Convolutional neural networks (CNNs) are always trapped by their huge amount of parameters when faced with resource-limited devices. To handle this problem, we propose a pruning scheme for neuron level pruning, in which the redundant neurons were selected globally in the network. Our scheme could automatically find a thinner network structure with a given performance.

INTRODUCTION

- Three types of current pruning methods
 - **Approximation**: Weight matrices and tensors in deep model could be approximated using decomposition techniques.
 - **Quantization**: By searching or constructing a finite set for candidate parameters, one could map parameters from real number to several candidates
 - **Pruning**: Reduce redundant connections, neurons or entire layers of the model.
- Pruning methods in different granularities:
 - Layer-level: Shallower networks
 - Neuron-level: Thinner networks
 - **Connection-level:** Sparser networks
- Main problems
 - How to evaluate the importance of a neuron
 - How to conduct the pruning process
- We refer neuron as a node in fully-connected networks or a filter in convolutional networks.

METHOD

- Redundant neurons selection (neuron importance evaluation)
 - *l* = *layer index*, *i* = *neuron index*, *N* = #*neurons in a layer*
 - Mean of activations:

$$S_{\bar{R}}(l,i) = \sum_{j=1}^{N} R_{ij}^{l}$$

Standard derivation of activations:

$$S_{\sigma}(l,i) = \sqrt{\frac{\sum_{j=1}^{N} (R_{ij}^{l} - \bar{R})}{N}}$$

Zhengtao Wang, Ce Zhu, Zhiqiang Xia, Qi Guo, Yipeng Liu School of Electronic Engineering / Center for Robotics University of Electronic Science and Technology of China (UESTC), Chengdu, China

- Average Absolute Weights Sum
 - $S_{AAWS}(l,i) = \frac{1}{n_c \times n_m \times n_n} \sum_C \sum_M \sum_N |W_i^l|$
- $n_c \times n_m \times n_n$ is the number of elements in a filter, W_i^l is a parameter in the filter. We omit indexes for simplicity.
- The imbalance of scores in different layers

Fig. 1: The score distribution of different metrics

Adjust scores in different layers for feasible global pruning.

 $S_{modified}(l,i) = \frac{1}{\frac{1}{N_l} \sum_{j=0}^{N_l} S(l^{j})}$

FRAMEWORK

Algorithm 1 Gradually global pruning scheme.

- **Input:** A trained Model: MGiven performance target: P_t Contribution score evaluator: $E(\cdot)$ Pruning ratio generator: r Training set: X Validation set: V
- **Output:** A thinner model: M
- 1: Compute the performance P_m of M using V
- 2: while $P_m \ge P_t$ do
- Compute the contribution scores of all neurons in Mwith evaluator $E(\cdot)$
- Sort the scores
- Select $N \times r$ neurons to be prune, where N is the number of neurons in current model Drop the selected neurons in the network, get M_{drop} , 6:
- update M by M_{drop}
- Fine-tune M with training set XUpdate P_m by the performance of M over V8:
- 9: end while
- 10: return M

- tensor

(e) $\sigma(R)$ scores after modification (f) AAWS scores after modification

$$\frac{S(l,i)}{\sum_{i=0}^{N_l} S(l,j)}$$

EXPERIMENT RESULTS

proposed.")

name	org.	\overline{R}	$\sigma(R)$	AAWS	Prop.
conv1_1	64	35(54.7%)	3(4.7%)	33(51.6%)	45(70.31%)
conv1_2	64	52(81.3%)	14(21.9%)	34(53.1%)	45(70.31%)
conv2_1	128	85(66.4%)	70(54.9%)	83(64.8%)	89(69.5%)
conv2_2	128	72(56.3%)	70(54.9%)	128(100.0%)	89(69.5%)
conv3_1	256	93(36.3%)	168(65.6%)	254(99.2%)	179(69.9%)
conv3_2	256	173(67.6%)	194(75.8%)	256(100.0%)	179(69.9%)
conv3_3	256	169(66.0%)	218(85.2%)	256(100.0%)	179(69.9%)
conv4_1	512	257(50.2%)	314(61.3%)	486(94.9%)	357(69.7%)
conv4_2	512	405(79.1%)	395(77.1%)	500(97.7%)	357(69.7%)
conv4_3	512	490(95.7%)	382(74.6%)	448(87.5%)	357(69.7%)
conv5_1	512	468(91.4%)	452(88.3%)	321(62.7%)	357(69.7%)
conv5_2	512	436(85.2%)	434(84.8%)	276(53.9%)	357(69.7%)
conv5_3	512	398(77.7%)	397(77.5%)	229(44.7%)	357(69.7%)
fc1	512	177(34.6%)	199(38.9%)	6(1.2%)	357(69.7%)
total	4736	3310(69.9%)	3310(69.9%)	3310(69.9%)	3304(69.8%)
acc.	87.32%	84.35%	81.88%	86.89%	86.54%

Pruning VGG network for Kaggle cat/dog classification(transfer learning)

name	org.	neurons	name	org.	neurons
conv1_1	64	28(43.8%)	conv4_3	512	512(100.0%)
conv1_2	64	28(43.8%)	conv5_1	512	512(100.0%)
conv2_1	128	59(46.1%)	conv5_1	512	512(100.0%)
conv2_2	128	74(57.8%)	conv5_2	512	512(100.0%)
conv3_1	256	169(66.1%)	conv5_3	512	506(98.8%)
conv3_2	256	192(75.0%)	fc1	4096	4096(100.0%)
conv3_3	256	216(84.4%)	fc2	4096	392(9.6%)
conv4_1	512	495(96.7%)	total	12416	8302(66.9%)
conv4_2	512	511(99.8%)	acc.	98.24%	97.22%

Pruning VGG-like network for CIFAR-10 classification(Prop. for "proportional pruning neurons in each layer, not