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INTRODUCTION PROPOSED APPROACH
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Autoencoder (AE) is a self supervised network, i.e. the output = input.

AE maps the input x to the latent space h by an encoder. This is given as:
h =@p(Wx)

The Decoder reverse maps the latent space to the output = input.
x=W'h=W"'p(Wx)

During training the problem is to learn the encoding and decoding weights .

This is done by minimizing the Euclidean cost.

argminHX—W'¢(WX)Hi here X =[x, |...| x|
ww'

Stacked autoencoders are formed by nesting one inside the other. Mathematically this is given by:

arg min HX—g(f(X))H;

We. W wh ..w

where g =W,'¢(W,"..o(W,'(f(X))) and f = (W,0 (W,_,..0(W,.X)))

RESULTS

CLASSIFICATION EXPERIMENTS

Comparison on KNN

Dataset

SDAE

DropOut

DropConnect

SparseConnect

Proposed

MNIST

97.33

97.36

97.36

95.91

97.12

basic

95.25

94.94

95.02

92.49

95.37

basic-rot

84.83

84.53

84.31

81.01

84.83

bg-rand

86.42

85.99

85.87

84.87

86.77

bg-img

77.16

76.46

77.31

79.84

77.39

bg-img-rot

52.21

52.06

52.40

48.91

52.40

USPS

94.91

95.32

94.62

94.62

95.42

Bangla

95.22

94.97

95.77

95.77

96.20

Devanagari

88.79

87.18

90.10

90.10

89.68

Comparison on SRC

Dataset

SDAE

DropOut

DropConnect

SparseConnect

Proposed

MNIST

98.33

98.33

98.29

97.16

98.20

basic

96.91

96.93

96.97

95.43

96.97

basic-rot

90.04

89.97

90.16

87.76

90.23

bg-rand

91.03

91.00

91.09

86.17

91.61

bg-img

384.14

85.19

85.77

85.84

84.67

bg-img-rot

62.46

60.09

62.73

57.75

63.27

USPS

95.49

95.57

96.06

96.01

96.11

Bangla

92.11

96.51

93.70

96.78

97.24

Devanagari

90.06

93.00

91.05

93.16

93.05

Comparison on SVM

Generally expressed as:

N
N

Regularized Autoencoders

arg min HX /4 'qﬁ(WX)H; +R(W,X)

w.wh

« Regularizer can be a sparsity promoting feature

- KL divergence

* LO-norm

e LT-norm

» Regularizer can be supervised, with class-sparsity promoting termlike L2,1-norm

e [tcan beacontractive term like Euclidean norm of the Jacobian

e [tcanbesparsity onthe weights

’
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DENOISING EXPERIMENTS

Original PSNR and
SSIM

DAE

Sparse DAE

SparseConnect

BM 3D

Proposed

Variance=0.01
PSNR=19.97
SSIM=0.57

PSNR=21.96
SSIM=0.63

PSNR=22.94
SSIM=0.68

PSNR=23.90
SSIM=0.72

PSNR=33.90
SSIM=0.94

PSNR=26.41
SSIM=0.78

Variance=0.05
PSNR=14.02
SSIM=0.33

PSNR=21.67
SSIM=0.62

PSNR=22.64
SSIM=0.67

PSNR=23.53
SSIM=0.70

PSNR=31.53
SSIM=0.86

PSNR=26.26
SSIM=0.73

Dataset

SDAE

DropOut

DropConnect

SparseConnect

Proposed

MNIST

98.50

98.39

98.51

97.97

98.51

basic

96.96

96.97

96.96

96.23

97.13

basic-rot

89.43

89.16

89.31

89.21

89.55

Variance=0.1
PSNR= 10.49
SSIM=0.20

PSNR=21.31
SSIM=0.60

PSNR=22.25
SSIM=0.65

PSNR=23.01
SSIM=0.67

PSNR=27.53
SSIM=0.80

PSNR=25.86
SSIM=0.70

bg-rand

91.28

91.17

91.52

90.70

91.52

bg-img

84.86

85.03

85.12

84.52

85.37

bg-img-rot

60.53

60.70

60.98

61.76

61.76

USPS

96.61

95.41

95.07

95.62

97.58

Bangla

95.09

95.43

93.33

96.81

93.50

Devanagari

94.11

89.83

88.98

95.18

96.07

CONCULSIONS

e Instead of deleting connections, modelling redundancy closely follows nature and in turn improves

autoencoders.

« The optimization problem can be efficiently solved using Majorization Minimization. Solutions are
orders of magnitude faster than backpropagation based techniques.

* The technique is generic and can be applied to both classification problems as well as for solving

inverse problems like denoising.

e In future, we will incorporate this for supervised autoencoding tasks for example label consistent '

autoencoder and class-sparse autoencoder.

Prior on sparse weighted autoencoder is akin to Optimal Brain Damage

proposed by LeCun. Majorization Minimization is used for solving

. . . the problem.
Basically simulates killing all the neurons that are redundant. P

Update for Decoder
W' < argmin|X =17 g0V, O+ [W ]

In reality, human brain is a redundant system.

We propose to model this redundancy explicitly.

Standard Nuclear Norm Minimization
Update for Encoder (Via MM)

We model redundancy as linear dependency of the representation layer
nodes. This leads to the fact that the encoder and decoder weights are
linearly dependent. In other words, the encoder and decoder are rank

B=g(W.X)+~W " (X =W, g(W,X))
deficient. !

Leads to encoder update

Mathematically Modeled as: W, < argp;ninHB —¢(WX)H12V L

Non-smooth optimization; cannot be solved using backpropagation.

. = argmin H¢_1 (B) — WXH2 + 0|77 |
agmin ¥ 90RO+ (1, 71, : L

Activation function 1s unitary.

Hence trivial to invert.

AOur Algorithm
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