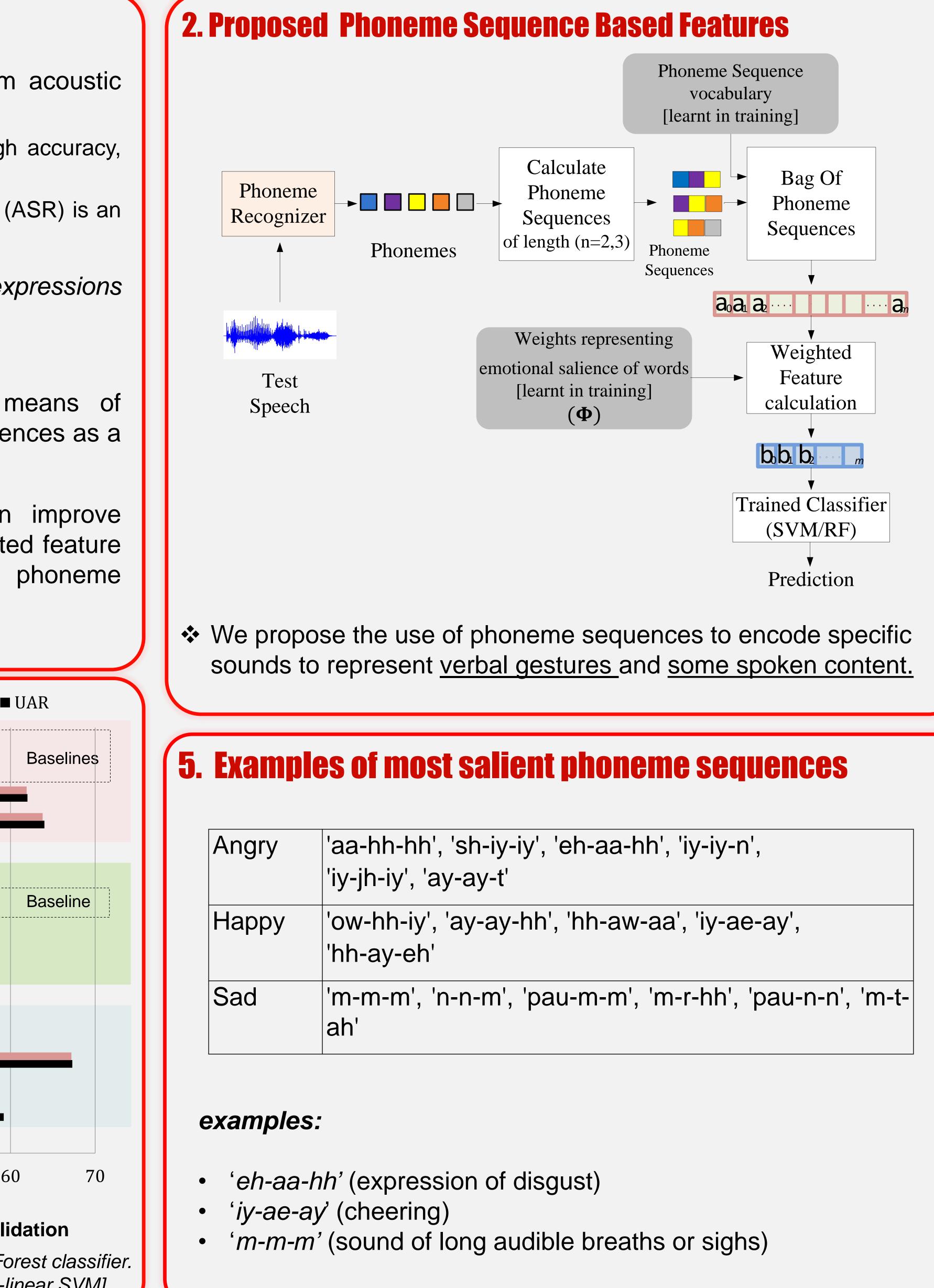


1. Introduction

- Speech emotion recognition systems benefit from acoustic features and lexical features.
 - Lexical features from manual transcripts provide high accuracy, but not suitable for practical situations.
 - Transcripts based on automatic speech recognition (ASR) is an alternative, but not as successful and not as popular.
- Vocal gestures' are linguistic and non linguistic expressions that generally signify emotions
 - Generally only some of these are modelled by ASR.
- ✤ We propose to capture vocal gestures by means of phoneme sequences and consider phoneme sequences as a type of lexical unit.
- Salience based weighing on lexical units can improve performance. We propose a novel saliency weighted feature representation applicable to both words and phoneme sequences.

. Key Result					
With manual transcripts	BOW [11]				
	Lex eVector [11]				
	Proposed LRF				
	Proposed mLRF				
Without manual transcripts	LEX-ASR[10]				
	Poposed mLRF(seq2)				
	Proposed mLRF(seq3)				
• •	Toposed IIIIRI (seqs)				
Fusion with	IS09				
acoustic Features(IS09)	IS09+mLRF(words)				
	IS09+mLRF(Seq2)				
	IS09+mLRF(Seq3)				
		30	40	50	


Experiments: IEMOCAP data on leave-one speaker-out cross validation

[Results reported for Proposed features is classified with Random Forest classifier. Lex-ASR [10]-non linear SVM classifier & BOW[11],Lex eVector[11]-linear SVM]

SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION

Kalani Wataraka Gamage^{1,2}, Vidhyasaharan Sethu¹, Eliathamby Ambikairajah^{1,2} ¹ The School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney NSW 2052, Australia ² ATP Research Laboratory, Data61, CSIRO, Australia, Sydney NSW 2015, Australia

kalani.watarakagamage@unsw.edu.au

3. Saliency weights and representations Salience based weighing, v_e for utterance u

 Φ is the saliency weight matrix corresponding to each word and each emotion for all words in Bag of Word / Phoneme vector $b_p(u)$ and K is the number of words in utterance u.

The proposed relative frequency based weighing (LRF)

 $\eta_i(w_k)$: number occurrences of the k^{th} lexical unit w_k , in utterance u of emotion j $\hat{\eta}_i(w_k)$: number occurrences of the k^{th} lexical unit w_k , in utterance u of emotion j *n* : the total number of emotions of interest

Novel Saliency based lexical feature vectors LRF : $v_e(u)$ feature based on above weight $(n \times 1)$ mLRF : $\overline{v_e}(u)$ Modified LRF features (2n × 1) $\overline{v_e}(u) = [v_e(u)^T \ m_e(u)^T]^T$ where $m_e(u) = [a_1(u), a_2(u), ..., a_n(u)]$ and $a_j(u) = \max \phi_{j,i}$

- classes.
- emotionally salient words.

6. Conclusion

- does not require a full ASR

 $v_e(u) = \frac{1}{K} \Phi b_p(u)$

 $\phi_{j,k} = \frac{\eta_j(w_k)}{1 + \frac{\hat{\eta}_j(w_k)}{1 + \frac{1}{w_k}}}$

Unlike Lex eVector, Proposed LRF weight does not apply penalty to words infrequently appearing on different emotion

• Inclusion of $m_e(u)$ in mLRF avoids watering down of the weights in long utterances with a small number of

Proposed saliency based lexical representation outperforms state-of-the-art lexical features for emotion recognition.

Phoneme Sequence based features can capture vocal gestures in emotion recognition systems and this approach