Microvasculature Segmentation of Arterioles Using Deep CNN

Yasmin Kassim

Co-authors: V. B. S. Prasath¹, O. Glinskii², R. J. Maude³ V. Glinsky², V. Huxley⁴, K. Palaniappan¹ ²Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, USA ³Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ⁴National Center for Gender Physiology, University of Missouri-Columbia, USA

IEEE ICIP 2017

E N 4 E N

• • • • • • • • •

Vessel Segmentation

- State-of-the-art
- Motivation and challenges

Vessel Segmentation

- State-of-the-art
- Motivation and challenges

2 Deep Learning Segmentation

- CNN architecture
- Training and Testing

Vessel Segmentation

- State-of-the-art
- Motivation and challenges

2 Deep Learning Segmentation

- CNN architecture
- Training and Testing

3 Experimental Results

- Dataset and ground-truth
- Comparison results

Vessel Segmentation

- State-of-the-art
- Motivation and challenges

2 Deep Learning Segmentation

- CNN architecture
- Training and Testing

3 Experimental Results

- Dataset and ground-truth
- Comparison results

4 Conclusions and Future work

Vessel Segmentation

- State-of-the-art
- Motivation and challenges

Deep Learning Segmentation

- CNN architecture
- Training and Testing

Experimental Results

- Dataset and ground-truth
- Comparison results

Conclusions and Future work

Segmentation of Curvilinear Structures

Sironi et al. Multiscale centerline detection. PAMI, 2015.

DRIVE - Digital Retinal Images for Vessel Extraction. http://www.isi.uu.nl/Research/Databases/DRIVE

(日) (同) (三) (三)

Vessel segmentation - Literature

Paper	Method	Strength	Weaknesses	
Frangi et al	2D 3D orientation pattern λ1 λ2 λ1 λ2 λ3 N N N N N N	Analysis of the structures	Distinguishing between adjacent thin structures	
Hessian	L L H- plate-like structure (bright) L L H plate-like structure (dark) L H- L Holdar structure (dark) L H+ L H+ L H+ L H+ L H+ L H+	using Eigenvalues	Connecting broken structures	
(MICCAI, 1998)	He He Hi Hi He He Mobilie structure (bright) He He He He He He Hob-like structure (dark)		Handling noise, inhomogeneous background	
Fraz et al		E	Difficulty with complex network structure	
Bit plane		For retinal imagery	Segmenting thin vessels	
(CMBP, 2012)	Name		Restricted to Funduscopy images	
Changyan Xiao		Distinguisting between	Connecting broken structures	
Bi Gaussian		Distinguishing between adjacent thin structures	Handling irregular curvilinear structure	
(TIP, 2013)	1 Harrison Harrison			
Nguyen et al		E	One feature is not enough for	
Line Detector		Connects the gaps	complicated structures	
(PR, 2013)	$\mathcal{S}_{n-1} = -\frac{1}{n+1} \left(\sum_{i=1}^{n} \partial_i + \delta_i \right)$			
Sironi et al			Time and computational complexity	
Multiscale		General framework Centerline detection	Connecting broken vessel structures	
(PAMI, 2016)				

Yasmin (Missouri)

Epifluorescence

Motivation - Effect of estrogen receptors on angiogenesis and vascular remodeling

Estrogen Controls Angiopoietin-1 (Ang-1) Expression via ER-alpha

Microvasculature structure extraction and quantitative analysis using mice dura mater

Yasmin (Missouri)

Epifluorescence

< 口 > < 同 >

Motivation - OV vs OVX quantification

tion 7 / 26

Epifluorescence-based microvasculature network versus retinal imagery (DRIVE)

- Graph Network vs Tree Structure
- Oreater texture variability in both fg and bg
- Inhomogeneous staining of the microvasculature
- Oifferent binding properties between arterioles and capillaries
- Uneven contrast, low texture content
- O Nonlinear binding of the fluorescence dye

8 / 26

Epifluorescence

Challenging cases for fluorescence-based microvasculature network segmentation

Microvasculature segmentation and analysis

1 Vessel Segmentation

- State-of-the-art
- Motivation and challenges

2 Deep Learning Segmentation

- CNN architecture
- Training and Testing

3 Experimental Results

- Dataset and ground-truth
- Comparison results

Conclusions and Future work

Proposed Deep Learning Network

э

CNN architecture

Layer Type	Input	Filter size	Output	Padding
Conv	32*32*1	5*5*1*20	28*28*20	0
Conv	28*28*20	5*5*20*20	28*28*20	2
Relu				
Conv	28*28*20	5*5*20*30	28*28*30	2
Conv	28*28*30	5*5*30*30	28*28*30	2
Relu				
Pooling	28*28*30	[2 2]	14*14*30	0
Conv	14*14*30	3*3*30*40	14*14*40	1
Conv	14*14*40	3*3*40*60	12*12*60	0
Relu				
Pooling	12*12*60	[2 2]	6*6*60	0
Conv	6*6*60	3*3*60*80	4*4*80	0
Fully connected	4*4*80	4*4*80*100	1*1*100	0
Fully connected	1*1*100	1*1*100*2	1*1*2	0
Softmaxloss			F or B	

2

→ E → < E →</p>

Image: A matrix

Training and Testing

- Our DBNet uses 32 * 32 microscopy image patches.
- Output two classes for microvasculature network as foreground, and other regions as background.
- 880600 Training patches from 10 different epifluorescence microscopy images with stride equal to 4.
- **9** Border patches not used: FG vessel if the corresponding ground truth

has all 1's.

 Testing phase uses overlapping patches through the network to obtain smooth binary segmentations.

Stride	patches number	Dice value	
256	300	17.73	
128	990	68.68	
64	3740	74.47	
32	14190	81.04	
16	55250	83.68	
8	221000	84.77	
4	880600	85.26	

Trained patches VS. Dice values

э

Vessel Segmentation

- State-of-the-art
- Motivation and challenges
- 2 Deep Learning Segmentation
 - CNN architecture
 - Training and Testing

3 Experimental Results

- Dataset and ground-truth
- Comparison results

Conclusions and Future work

Ground-truth masks - arterioles, venules, no-care

Yasmin (Missouri)

Epifluorescence

Data Set: Epifluorescence Imgaes OVX

- **1** Dataset 20 images, 10 Wild-type (WT) + 10 Knock-out (KO, $ER\beta$)
- Ground-truth (GT) manually marked by expert Physiologists 2
- Separate masks for arterioles, venules, no-care

Epifluorescence

18 / 26

Quantitative comparison results - Dice values

Yasmin (Missouri)

19 / 26

Yasmin (Missouri)

Vessel Segmentation

- State-of-the-art
- Motivation and challenges

2 Deep Learning Segmentation

- CNN architecture
- Training and Testing

Experimental Results

- Dataset and ground-truth
- Comparison results

4 Conclusions and Future work

Conclusions

Work done:

- $\checkmark\,$ Our deep learning segmentation outperforms other methods in terms of five evaluation metrics.
- $\checkmark\,$ Experimental results for both WT and KO animal models achieves an overall accuracy of 99%
- ✓ General pipeline that can be adapted in biomedical (retinal, neuronal) and curvilinear structures (road network).

Future work:

- New approach for segmenting the diffused venule regions
- Quantitative analysis of segmented microvasculature structures for statistical evaluation of vessel remodeling between WT and KO
- Apply semantic segmentation

22 / 26

Appendix: MNIST Configuration in MatConvNet framework applied to our vessels images

