

BACT-3D: A LEVEL SET SEGMENTATION APPROACH FOR DENSE MULTI-LAYERED 3D BACTERIAL BIOFILMS

Wang, J., R. Sarkar, A. Aziz, A. Vaccari, A. Gahlmann, S.T. Acton

> ICIP • Beijing Sep. 20th, 2017

VIRGINIA IMAGE & VIDEO ANALYSIS

Overview

Introduction

- Live in dense aggregations: Biofilms ullet
 - Cellular contacts;
 - Essential ecological processes;
 - High antibiotic resistance.

- Shewanella oneidensis MR-1 biofilms, \bullet Gahlmann Lab, UVa.
 - Limited understanding of individual bacteria in crowed environment.

[1]: Peter Raven, Kenneth Mason, Jonathan Losos, and Susan Singer, "https://commons.wikimedia.org/w/index.php?curid=44194140," Biology 10e Textbook. [2]: https://youtu.be/6Cx62zS0Yp0

Super-resolution Imaging Technique

Traditional optical confocal microscopy

Super-resolution microscopy

[1]: Veysel Berk, Jiunn C. N. Fong, Graham T. Dempsey, et al., "Molecular architecture and assembly principles of vibrio cholerae biofilms," Science, vol. 337, pp. 236–239, 2012.
 [2]: Marissa K. Lee, Prabin Rai, Jarrod Williams, et al., "Small-molecule labeling of live cell surfaces for three-dimensional superresolution microscopy," Journal of the American Chemical Society, vol. 136, pp. 14003,àí14006, 2014.

[2]

Previous Segmentation Methods

- Edge Detection ^[1]:
 - Affected by image noise.

Vector Field Convolution^[3]:

Special initialization required.

Watershed^[2]:

Sensitive to intensity changes.

Seeded Watershed^[4]:

Challenges in dense-community performance.

[1] T. Lindeberg and M. Li, "Segmentation and classification of edges using minimum description length approximation and complementary junction cues," CVIU, 67(1), pp. 88–89, 1997. [2]: L. Vincent and P. Soille, "Watersheds in digital spaces: an efficient algorithm based on immersion simulations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583–598, 1991. [3]: Bing Li and Scott T. Acton, "Active contour external force using vector field convolution for image segmentation," IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2096–2106, 2007. 5 [4]: Pinidiyaarachchi, Amalka, and Carolina Wählby. "Seeded watersheds for combined segmentation and tracking of cells." Image Analysis and Processing–ICIAP 2005 (2005): 336-343.

Chan Vese ^[1]: \bullet

Define the image into foreground and background.

L2S^[2]: \bullet

Model the inhomogeneity in the images as linear combination of Legendre polynomials.

- [1]: T. F. Chan and L. A. Vese, "Active contours without edges," IEEE Transaction of Image processing, vol. 10, no. 2, pp. 266–277, 2001.
- [2]: S. Mukherjee and S. T. Acton, "Region based segmentation in presence of intensity inhomogeneity using Legendre polynomials," IEEE SPL, vol. 22, no. 3, pp. 298–302, March 2015.
- [3]: Three images idemonstrate the failure of Chan Vese in noisy environment are from L2S.

Cell splitting methods

Splitting touching cells based on concave points [1]:

Splitting touching cells based on gradient flow [2]:

[1] X. Bai, C. Sun, and F. Zhou, "Splitting touching cells based on concave points and ellipse fitting," Pattern Recognition, vol. 42, pp. 2434, Äì2446, 2009.
 [2] L. Vincent and P. Soille, "Watersheds in digital spaces: an efficient algorithm based on immersion simulations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583–598, 1991.

Other integrated methods

S. K. Sadanandan, "O. Baltekin, K. E. G. Magnusson, et al., "Segmentation and track-analysis in time-lapse imaging of bacteria," IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 1, pp. 174–184, 2016.

weight =
$$0.5 \times RAR + 0.5 \times convexity$$

 $RAR = \frac{\min(area_{object}, ellipsearea)}{\max(area_{object}, ellipsearea)}$
 $area_{object}$

objec *convexity* = area convexhullofobject

J. Yan, A.G. Sharo, H. A. Stone, N. S. Wingreen, and B. L. Bassler, "Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging," Proceedings of the National Academy of Sciences, vol. 113, no. 36, pp. E5337-E5343, 2016.

٠

A. Raw data \rightarrow B. Deconvolved image \rightarrow C. Projection (Watershed) \rightarrow D. Reconstruction

Bact-3D

Dataset generation

A. Multi-layered dense biofilms

B. Construct bacterial structure C. Simulate fluorescence emission

D. Convolve with Gaussian kernels

Curvature-based seed selection

• Evaluating the Hessian of the image:

 $H = \begin{bmatrix} Ixx & Ixy \\ Iyx & Iyy \end{bmatrix}$

 Select the most negative eigenvalues with highest curvature

Iterative level set evolution

[1] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddigi, "Turbopixels: Fast superpixels using geometric flows," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2290–2297, 2009.

[2] Velocity representation refer to: C.O. Solorzano, R. Malladi, S.A. Lelievre, and S.J. Lockett, "Segmentation of nuclei and cells using membrane related protein markers," Journal of Microscopy, vol. 201, pp. 404–415, 2001.

Contrast normalization

Localization of individual bacteria

A. W. Fitzgibbon, M. Pilu, and R. B. Fisher, "Direct least squares fitting of ellipses," 1996.

Stopping criterion

- **a**: Original image;
- **b**: Stopping criterion is set as the skeleton of background that excludes ellipses;

c: Stopping criterion is efficient for most situations;

11111

01110

00100 00100 $11111 \longrightarrow 11111$ 00100 00100

Layer detection and re-initialization

Experimental results

- **Locality**: the contours are always limited to a single-cell region; ullet
- **Trackability**: locations and orientations are available for each individual bacterium. ullet

Comparison of segmentation performance

Dice Coefficient

• Compares similarities

$$Dice = \frac{2\left|V_g \cap V_t\right|}{\left|V_g\right| + \left|V_t\right|}$$

Mean squared error

• Compares averaged error

$$MSE = \frac{1}{Z} \cdot \left\| V_g - V_t \right\|_2^2$$

Cell detection accuracy

• Number of cells detected

$$CD = \frac{2\min(N_g, N_t)}{N_g + N_t}$$

Resolution 1	Dice	MSE
Bact-3D	0.871	0.084
Yan, et al.	0.558	0.240
Chan-Vese	0.895	0.073
L2S	0.891	0.075
*	*	
Resolution 2	Dice	MSE
Bact-3D	0.861	0.089
Yan, et al.	0.546	0.245
Chan-Vese	0.834	0.105
L2S	0.876	0.087

CD%
99.8
56.54
5.41
5.27
CD%
99.8
72.2
15.7
4.52

Why are Bact-3D's Dice and MSE not better than the other two?

- New: no layer assumption
- Use Chan-Vese initialization to estimate orientation of cell; take 2D skeletons to make stopping criterion in X, Y, Z (via union of slices)
- Velocity of level set now depends on the distance to nearest stopping criterion (slow down near the stopping criterion)

take 2D slices) st stopping

From active contour to active surface: Bact-3Ds

1. Seed Selection: 3D ChanVese

2. Curvature-based active surface

Chan-Vese

Bact-3D

3D viewers (detected No./ total No.)

24

Conclusion

How do cells communicate, share nutrients, discard waste and self-organize?

Andreas Gahlmann

- Separate touching cells
- Reconstruct multilayered
 bacterial biofilms
- Provide tool for tracking cells and studying group structure

Modify to be robust for real data

Thank you! 谢谢!

