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Problem Statement and Motivation1
• Color is a low-level feature that is used in several applications — detection, recognition, 

retrieval, and tracking of  objects.  

• Several perceptual studies [1] have shown that categorical perception plays an important 
role in the process of  color discrimination and color memorization. 

• Inspired by the human categorization in color theory [2, 3, 4], this paper proposes a lookup 
table for compact representation of  color spaces, which reduces the space of  color to 11 
categories.  

• A reduced color space will be particularly suitable to content-based image retrieval and 
classification tasks. 

Previous Work2
• Given the 11 color names, chip-based methods [5, 6, 7] rely on a controlled experimental 

setup in which the color category of  particular color chips is decided by human subjects. 
Based on the distance from those “anchor chips”, the category of  the rest of  triplets in a 
color coordinate system can be determined. 

• Those chip-based methods perform poorly, though, as they sample the RGB color 
coordinate system only sparsely. 

• To overcome such drawbacks, the techniques of  [3, 8] adopt a modified version of  
probabilistic latent semantic analysis (PLSA) to learn color names from real-world images 
queried from Google, taking into account the color label of  queried images. 

• In [9], the authors started with an off-the-shelf  color naming. Relying on learned human 
prioritization of  colors on natural images, they assigned a dominant and an associative 
color name to every image region. Hence, they boosted the pixel-level color naming to the 
image/region level.

Proposed Method - Label Propagation [Cont.]6

Learning by Transduction3
• Learning by transduction exploits both labelled 

and unlabelled data points to infer a discriminative 
model. 

• This is particularly useful if  the labelled points are 
scarce and if  the data points are well-separated in 
the feature space.

COLOR REDUCTION BASED ON HUMAN CATEGORICAL PERCEPTION

R. Laganière1, D. Pang1, and A. Al-Kabbany1,2

1 School of Electrical Engineering and Computer Science, University of Ottawa, Canada
2Faculty of Engineering, Arab Academy for Science and Technology, Egypt

ABSTRACT

This paper addresses the problem of color reduction which
aims at computing a compact representation of a color coor-
dinate system. Color reduction has shown to be a significant
operation in several applications such as object tracking and
surveillance systems. In experimental psychology, categor-
ical perception refers to the process in which a continuous
spectrum of stimuli is perceived as different qualitative cat-
egories. By capitalizing on studies that have suggested the
existence of eleven focal colors, we conducted subjective ex-
periments which exploited the categorical nature of human
color perception. The contributions of this paper are: 1) a
novel color reduction scheme based on human perception and
graph transduction, 2) a look-up table that reduces the RGB
color coordinate system to eleven salient colors. Objective
results on standard datasets show notable improvements over
the state-of-the-art methods.

Index Terms— Color, Reduction, Naming, Transduction,
Propagation

1. INTRODUCTION AND RELATED WORK

These guidelines include complete descriptions of the fonts,
spacing, and related information for producing your proceed-
ings manuscripts. Please follow them and if you have any
questions, direct them to Conference Management Services,
Inc.: Phone +1-979-846-6800 or email to
ip17@securecms.com.

2. LEARNING BY TRANSDUCTION

For some classification/labelling problems, learning a general
rule from training data (induction), may turn out to be unnec-
essary [1]. Alternatively, the labelled and the unlabelled data
can be used to classify the testing points.

Figure 1 shows an instance of the two half-moons configu-
ration. In this context or scenario, all the observed data points
(labelled and unlabelled) are available beforehand. The la-
belled data are shown as green and orange points in Fig. 1(a).
The goal is to label the rest of the grey points with a binary
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Fig. 1: The iconic illustration of transduction on the two half-
moons configuration. Details are provided in the text.

label (either green or orange). Using just the labelled points
to infer a predictive model may result in fitting a hyperplane
for example, as shown in Fig. 1(a). This results in assigning
wrong labels, to the right-most and the left-most grey (test-
ing) points. However, if the points are well-separated in the
feature space, i.e., high-margin exists, we can learn a func-
tion from all the observed data points with the condition that
it passes through the regions with low-density in the feature
space; this is shown as the black curve in Fig. 1(b).

In this research, we infer color names (labels) of RGB
triplets using the graph Laplacian-based transduction method
[2, 3]. Figure 1 depicts the goal of transduction, that is to
find a smooth mapping f that varies only in regions of low
density in the feature space, and at the same time assign to
every training point the label that is associated with it, or a
very close label, i.e., f(Xi) = Yi, where Yi is the label of the
training point Xi. The aforementioned requirements define
an optimization problem for which a discrete alternative was
proposed in [4].

For discretization, graph Laplacian methods are adopted;
they are based on a discrete approximation of the s-weighted
Laplacian operator [3]. In these methods, a graph with nodes
representing the data points (the Xis) is constructed, and the
weights of the edges of that graph are induced using a kernel
(often an exponential kernel) that represents the similarities
(affinities) between the Xis in the feature space. The discrete
approximation for the original optimization problem is given
by

min
F2Rn

(F � Y )TC(F � Y ) + FTL F, (1)

where n is the total number of labelled and unlabelled data
points, Y is the n-dimensional vector in which the ith ele-
ment is Yi for a labelled point, and 0 for a test point, C is the
diagonal n⇥ n matrix in which the ith diagonal element is ci
for a labelled point, and 0 for a test point, and L is the graph

Proposed Method - Main Idea and Label Gathering Experiment4
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• We propose a semi-supervised learning-based scheme for color reduction using graph 
Laplacian-based transduction [11]. 

• Color names (labels) for sparse triplets in the RGB cube are first provided by a group of  31 
volunteers (tested for vision problems) to enforce a perceptually relevant labelling. 
Experiments were carried out in an average office environment with monitors equipped 
with 16 million-color graphics cards.

• Then, the acquired sparse labels are propagated to the whole RGB  cube by means of  the 
transduction of  a graph whose nodes/vertices are all the triplets in the RGB cube.  

• The output is a lookup table that maps every RGB  triplet to a fuzzy color naming vector 
that indicates how likely a triplet is affiliated with each of  the 11 basic color labels.  

• Each volunteer was assigned three images to be labelled within a maximum of  20 minutes. 
Every image was shown as a set of  super-pixels and the volunteers were instructed to give 
every super-pixel one of  the 11 Basic Color Labels . 

• Contrary to chip-based methods, we require the labelled triplets to sample the RGB cube 
efficiently. We chose images to be labeled by solving a knapsack problem.

Proposed Method - Label Propagation5
• First, we compute a Normalized Word Count for every RGB triplet in the labelled images 

• That count is a vector of  11 elements, each of  which is the number of  times an RGB was assigned a particular 
label, divided by total number of  its occurrence in labeled images 

• A triplet in labelled images might have existed several times, and might have been assigned different labels by 
different/same participants since the context of  an image was found to influence color naming. 

• Label propagation step is started by dividing the RGB cube into H sub-cubes, and computing a pool of  proposals 
— the triplets not farther than a certain Euclidean distance away (in RGB space).  

• Figure 2 depicts an example of  an RGB sub-cube, its corresponding pool of  proposals, and its dominant color 
names (red, pink, and orange). 

• We loop over the sub-cubes, and over every dominant color name. For every loop, we construct a graph with nodes 
representing the RGB triplets in the sub-cube and the proposals affiliated with the color name of  the current loop.

Laplacian. The n-dimensional vector F can then be obtained
by solving the linear system given by

(L+ C) F = C Y. (2)

It should be noted that for binary labelling problems, such as
the case in Fig. 1, the output vector F should be thresholded.
The elements in F that correspond to the testing points in the
constructed graph are the labels of the testing points. Trans-
ductive inference has been introduced to several computer vi-
sion problems including segmentation [3] and matting [5, 6].

3. PROPOSED METHOD

We propose a semi-supervised learning-based scheme for
color reduction. Color names (Labels) for sparse triplets in
the RGB cube are first provided by a group of volunteers to
enforce a perceptually relevant labelling. Then, the acquired
sparse labels are propagated to the whole RGB cube by means
of the transduction of a graph whose nodes/vertices are all
the triplets in the RGB cube. We start by detailing the setup
and the procedure of the experiment used to gather sparse
color labels in the RGB cube. Then, we present our graph
transduction-based approach for constructing a lookup table
that maps every RGB triplet to a fuzzy color naming vec-
tor. That vector indicates how likely a particular triplet is
affiliated with each of the 11 Basic Color Labels.

On voluntary basis, thirty-one students and researchers at
the University of Ottawa, Canada and INRIA Rennes, France,
took part in the experiment. Prior to providing color labels,
the participants were tested for color vision problems using
the Ishihara color-blindness test. Stimuli were displayed on
a variety of monitors in average office environments. All
computers were equipped with recent graphic card set at 16
millions colors. The procedure of our experiment was con-
strained by the number of available volunteers as well as the
longest time period the volunteers could afford to participate
in the experiment. Each of the thirty-one volunteers was as-
signed three images (a set of 93 training images, {Ir

k}) to be
labelled within a maximum of twenty minutes. Every image
was shown as a set of SLIC [7] super-pixels and the volun-
teers were instructed to give every super-pixel one of the 11
Basic Color Labels. This results in a mapping from the RGB
triplets – represented by the constituent pixels of a particular
super-pixel – to the label set, the 11 Basic Color Terms.

Contrary to chip-based methods, we require the set {Ir
k}

to sample the RGB cube efficiently, i.e., to ensure that the
RGB triplets in the selected images are well distributed within
the cube. Towards this goal, and with the XXXXXX dataset
as the super-set of training images, we solved a knapsack
problem to single out 93 images so that we maximize the cov-
erage of the RGB cube.

The last step in the procedure of the experiment is to com-
pute the Normalized Word Count (as in the terminology of

Border of Proposals Pool RGB Sub-cube
Centroid of Sub-cubeMostly-red Proposals

Fig. 2: An illustration of the proposals pool constructed for
every sub-cube in the RGB cube. The normalized word
counts of the shown proposals are propagated to the RGB
triplets in the sub-cube by means of graph transduction.
Please see text for more details.

the authors of [8, 9]) for {T r
j } – the set of RGB triplets con-

tained in {Ir
k}. A triplet in this set might have existed several

times in {Ir
k}, and might have been assigned different color

labels by different/same participants as well since the context
of an image was found to influence significantly the process
of color naming. The normalized word count for T r

j 2 {T r
j },

Cn
j , is a vector with eleven elements, each of which is the

number of times the triplet T r
j was assigned the color name

cl; l = 1, 2, · · · , 11 divided by the total number of occur-
rences of T r

j in {Ir
k}. The triplets in the RGB cube are given

the symbol {Ti} where i = 1, · · · , 2563. The lookup table
that realizes the proposed color reduction scheme maps {Ti}
to {Ci} where every Ci := [c1, · · · , cl, · · · , c11] with compo-
nents indicating how likely Ti is affiliated to each of the 11
basic color labels.

We start the label propagation step by dividing the RGB
cube into H sub-cubes. For each of these sub-cubes, we com-
pute T r

jh – a pool of proposals that is comprised of the subset
of T r

j that are not farther than a certain Euclidean distance
(in the RGB color coordinate system) away from the centroid
of the sub-cube under consideration. Figure 2 depicts an ex-
ample of an RGB sub-cube and its corresponding sphere of
proposals, which is shown as a solid black circle. In this ex-
ample, the proposals lying within the sphere that surrounds
the shown RGB sub-cube are mostly-red, mostly-pink, and
mostly-orange; this is determined by their normalized word
counts, i.e., a proposal is mostly-red when the largest element
in its normalized word-count vector is the one corresponding
to the red color name. We call the red, the pink, and the or-
ange: the dominant color names for the sub-cube in Fig. 2.

We loop over the sub-cubes, and for every dominant color
name we construct a graph with nodes representing the RGB
triplets in the sub-cube, {Th}, in addition to the proposals
– the RGB triplets that are affiliated with the color name of
the current loop. Then, we solve a graph transduction prob-
lem, by minimizing an objective function and solving a cor-
responding linear system given by eqn. 1 and eqn. 2, to get a
vector of scores whose length equal to the cardinality of {Th},
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Fig. 3: An illustration of the graph constructed to propagate
fuzzy color naming vectors from scarce manually-labelled
proposals to every triplet in the RGB cube. Some edges are
not shown for clarity of presentation. Please see text for more
details.

and whose elements indicate the degree of acceptance of the
proposals by each member in {Th}. The constructed graph is
shown in Fig. 3. The entries of the Laplacian matrix of this
graph are calculated using the kernel function given by

k(Xi, Xj) =
ek(Xi, Xj)

[ed(Xi) ed(Xj)]�
, where (3a)

ek(Xi, Xj) = e� kXi�Xjk
2

2�2 , and (3b)

ed(Xi) =
nX

j=1

ek(Xi, Xj), (3c)

where n is the dimension of the Laplacian (square) matrix and
Xi (and similarly Xj) is defined as the RGB feature vector.

After obtaining the vector F , by solving eqn. 2, we deter-
mine the vector F s which is comprised of the elements in F
that corresponds to the testing points in the constructed graph.
F s is the vector of scores which indicates the coherency be-
tween the triplets of a sub-cube and its proposals. We define
Ci, that is the color naming vector of the triplet Ti as:

Ci :=
1

N

NX

n=1

F s
n ⇥Wn, (4)

where N is the number of dominant color names in the sphere
of proposals, F s

n is F s for the color name n and Wn is the
1 ⇥ 11 vector that is comprised of the maximum normalized
word count that the proposals have for every color name. Ac-
cordingly, the fuzzy color naming vector of an RGB triplet is
defined as the outer product of the vector indicating its accep-
tance for the proposals and the vector representing the maxi-
mum normlaized word count for every color name across all
the proposals.
A Bayesian Formulation for Color Naming: Following the
authors of [8, 9], we aim to adapt our proposed approach
so that an image ‘color label’ or ‘region information’ can
be taken into consideration while assigning color names to
pixels in that image or image region. The computed lookup

table is equivalent to a distribution over RGB triplets repre-
senting the color names. In the terminology of the authors
of [8, 9], this is the distribution over words representing the
topics, p(w|t), which can be used to compute the probability
of a topic given a word by assuming a uniform prior over the
topics, p(t|w) / p(t)p(w|t). Thus, the probability of a color
name (topic) given: 1) an RGB triplet (word) and 2) an image
color label can be formulated as:

p(t|w,L) / p(w|t)p(t|L) (5)

where L is an image color label, or generally, a prior over the
frequency of color names in an image or a region in an image.

Counting on the intuition that colors which often co-occur
are more likely to affiliate to the same color name, we com-
puted a co-occurrence matrix, M, for the color names. An en-
try in this 11⇥11 co-occurrence matrix is equal to the normal-
ized count of the co-occurrence of those color names among
the most likely K (K = 3 in our experiments) color names
for all the triplets in the lookup table. For assigning a color
name to a particular triplet Ti in the RGB cube, we have a
likelihood term which is the color naming fuzzy vectors of the
lookup table, and a prior term induced by the co-occurrence
matrix. Thus, the color naming problem can be formulated in
a Bayesian fashion as:

p(cl|Ti, L) / p(Ti|cl)p(cl|L) (6)

where p(cl|Ti, L) is the probability of assigning a color name
cl to the triplet Ti, given that the color label of the whole im-
age L. To bias the color naming with our prior, we determine
the index of the maximum value in the vector Ci ⇥M�

L, where
ML is the column corresponding to L in M and � is a weight
for the prior. In both cases, we denote the maximum value in
Ci as c⇤

il.

4. RESULTS AND DISCUSSION

The results presented in this section were obtained using
Matlabr, and were run on a PC with Intel Core2Quad
2.66GHz processor and 4GB of RAM. Since the PLSA-based
methods of PLSA-ind and PLSA-reg have been shown to out-
perform the chip-based methods [10, 11, 12, 13], we compare
the performance of our method with the former two methods
only. It is worth mentioning that PLSA-ind and PLSA-reg
represent two color naming algorithms that assign a color
name for CIELab triplets with and without taking region in-
formation into consideration, respectively. Throughout this
section, our proposed approaches of color naming (with and
without considering prior information) will be referred to as
CTI and CTR respectively.

The performance of the proposed method is evaluated on
the eBay image dataset1. This dataset is comprised of 4 object

1http://lear.inrialpes.fr/people/vandeweijer/color names.html

Proposed Method - Label Propagation [Cont.]7
• Then, we solve a graph transduction problem by minimizing an objective 

function and solving the corresponding linear system given by eqn.(1) 
and eqn.(2). 

• We get a vector of  scores whose length equals to the number of  triplets 
in the sub-cube, and whose elements indicate the degree of  acceptance 
of  the proposals by triplets in the sub-cube 

• The entries of  the Laplacian matrix of  this graph are calculated using the 
kernel function given by
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Fig. 3: An illustration of the graph constructed to propagate
fuzzy color naming vectors from scarce manually-labelled
proposals to every triplet in the RGB cube. Some edges are
not shown for clarity of presentation. Please see text for more
details.

and whose elements indicate the degree of acceptance of the
proposals by each member in {Th}. The constructed graph is
shown in Fig. 3. The entries of the Laplacian matrix of this
graph are calculated using the kernel function given by

k(Xi, Xj) =
ek(Xi, Xj)

[ed(Xi) ed(Xj)]�
, where (3a)

ek(Xi, Xj) = e� kXi�Xjk
2

2�2 , and (3b)

ed(Xi) =
nX

j=1

ek(Xi, Xj), (3c)

where n is the dimension of the Laplacian (square) matrix and
Xi (and similarly Xj) is defined as the RGB feature vector.

After obtaining the vector F , by solving eqn. 2, we deter-
mine the vector F s which is comprised of the elements in F
that corresponds to the testing points in the constructed graph.
F s is the vector of scores which indicates the coherency be-
tween the triplets of a sub-cube and its proposals. We define
Ci, that is the color naming vector of the triplet Ti as:

Ci :=
1

N

NX

n=1

F s
n ⇥Wn, (4)

where N is the number of dominant color names in the sphere
of proposals, F s

n is F s for the color name n and Wn is the
1 ⇥ 11 vector that is comprised of the maximum normalized
word count that the proposals have for every color name. Ac-
cordingly, the fuzzy color naming vector of an RGB triplet is
defined as the outer product of the vector indicating its accep-
tance for the proposals and the vector representing the maxi-
mum normlaized word count for every color name across all
the proposals.
A Bayesian Formulation for Color Naming: Following the
authors of [8, 9], we aim to adapt our proposed approach
so that an image ‘color label’ or ‘region information’ can
be taken into consideration while assigning color names to
pixels in that image or image region. The computed lookup

table is equivalent to a distribution over RGB triplets repre-
senting the color names. In the terminology of the authors
of [8, 9], this is the distribution over words representing the
topics, p(w|t), which can be used to compute the probability
of a topic given a word by assuming a uniform prior over the
topics, p(t|w) / p(t)p(w|t). Thus, the probability of a color
name (topic) given: 1) an RGB triplet (word) and 2) an image
color label can be formulated as:

p(t|w,L) / p(w|t)p(t|L) (5)

where L is an image color label, or generally, a prior over the
frequency of color names in an image or a region in an image.

Counting on the intuition that colors which often co-occur
are more likely to affiliate to the same color name, we com-
puted a co-occurrence matrix, M, for the color names. An en-
try in this 11⇥11 co-occurrence matrix is equal to the normal-
ized count of the co-occurrence of those color names among
the most likely K (K = 3 in our experiments) color names
for all the triplets in the lookup table. For assigning a color
name to a particular triplet Ti in the RGB cube, we have a
likelihood term which is the color naming fuzzy vectors of the
lookup table, and a prior term induced by the co-occurrence
matrix. Thus, the color naming problem can be formulated in
a Bayesian fashion as:

p(cl|Ti, L) / p(Ti|cl)p(cl|L) (6)

where p(cl|Ti, L) is the probability of assigning a color name
cl to the triplet Ti, given that the color label of the whole im-
age L. To bias the color naming with our prior, we determine
the index of the maximum value in the vector Ci ⇥M�

L, where
ML is the column corresponding to L in M and � is a weight
for the prior. In both cases, we denote the maximum value in
Ci as c⇤

il.

4. RESULTS AND DISCUSSION

The results presented in this section were obtained using
Matlabr, and were run on a PC with Intel Core2Quad
2.66GHz processor and 4GB of RAM. Since the PLSA-based
methods of PLSA-ind and PLSA-reg have been shown to out-
perform the chip-based methods [10, 11, 12, 13], we compare
the performance of our method with the former two methods
only. It is worth mentioning that PLSA-ind and PLSA-reg
represent two color naming algorithms that assign a color
name for CIELab triplets with and without taking region in-
formation into consideration, respectively. Throughout this
section, our proposed approaches of color naming (with and
without considering prior information) will be referred to as
CTI and CTR respectively.

The performance of the proposed method is evaluated on
the eBay image dataset1. This dataset is comprised of 4 object

1http://lear.inrialpes.fr/people/vandeweijer/color names.html

(3)

• After obtaining the vector F, we define the color naming vectors of  the 
triplets in the sub-cube by

Border of Proposals Pool RGB Sub-cube
Centroid of Sub-cubeMostly-red Proposals

Fig. 2: An illustration of the proposals pool constructed for
every sub-cube in the RGB cube. The normalized word counts
of the shown proposals are propagated to the RGB triplets in
the sub-cube by means of graph transduction. Please see text
for more details.

responding linear system given by eqn.(1) and eqn.(2), to get
a vector of scores whose length equals to the cardinality of
{Th}, and whose elements indicate the degree of acceptance
of the proposals by each member in {Th}. The constructed
graph is shown in Fig. 3. The entries of the Laplacian matrix
of this graph are calculated using the kernel function given by

k(Xi, Xj) =
ek(Xi, Xj)

[ed(Xi) ed(Xj)]�
, where (3a)

ek(Xi, Xj) = e�
kXi�Xjk

2

2�2 , and (3b)

ed(Xi) =
nX

j=1

ek(Xi, Xj), (3c)

where n is the dimension of the Laplacian (square) matrix and
Xi (and similarly Xj) is defined as the RGB feature vector.

After obtaining the vector F , by solving eqn.(2), we deter-
mine the vector F s which is comprised of the elements in F
that corresponds to the testing points in the constructed graph.
F s is the vector of scores which indicates the coherency be-
tween the triplets of a sub-cube and its proposals. We define
Cih, the color naming vectors of the triplets {Th} as:

Cih :=
1

N

NX

n=1

F s
n ⇥Wn, (4)

where N is the number of dominant color names in the sphere
of proposals, F s

n is F s for the color name n and Wn is the
1 ⇥ 11 vector that is comprised of the maximum normalized
word count that the proposals have for every color name. Ac-
cordingly, the fuzzy color naming vectors of the RGB triplets
in a sub-cube are defined as the averages of the outer products
of the vectors indicating their acceptance for the proposals
and the vectors representing the maximum normalized word
count for every color name across all the proposals.
A Bayesian Formulation for Color Naming: Following the
authors of [5, 3], we aim to adapt our proposed approach
so that an image ‘color label’ or ‘region information’ can
be taken into consideration while assigning color names to
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Fig. 3: An illustration of the graph constructed to propagate
fuzzy color naming vectors from scarce manually-labelled
proposals to every triplet in the RGB cube. Some edges are
not shown for clarity of presentation. Please see text for more
details.

pixels in that image or image region. The computed lookup
table is equivalent to a distribution over RGB triplets repre-
senting the color names. In the terminology of the authors
of [5, 3], this is the distribution over words representing the
topics, p(w|t), which can be used to compute the probability
of a topic given a word by assuming a uniform prior over the
topics, p(t|w) / p(t)p(w|t). Thus, the probability of a color
name (topic) given: 1) an RGB triplet (word) and 2) an image
color label can be formulated as:

p(t|w,L) / p(w|t)p(t|L) (5)

where L is an image color label, or generally, a prior over the
frequency of color names in an image or a region in an image.

Counting on the intuition that colors which often co-occur
are more likely to affiliate to the same color name, we com-
puted a co-occurrence matrix, M, for the color names. An
entry in this 11 ⇥ 11 co-occurrence matrix is equal to the
normalized count of the co-occurrence of those color names
among the most likely K (K = 3 in our experiments) color
names for all the triplets in the lookup table. For assigning
a color name to a particular triplet Ti in the RGB cube, we
have a likelihood term which is the color naming fuzzy vec-
tors of the lookup table, and a prior term induced by the co-
occurrence matrix. Thus, the color naming problem can be
formulated in a Bayesian fashion as:

p(l|Ti, L) / p(Ti|l)p(l|L) (6)

where p(l|Ti, L) is the probability of assigning a color name l
to the triplet Ti, given that the color label of the whole image
is L. To bias the color naming with our prior, we determine
the index of the maximum value in the vector Ci ⇥M�

L, where
ML is the column corresponding to L in M and � is a weight
for the prior. In both cases, we denote the maximum value in
Ci as c⇤il.

4. RESULTS AND DISCUSSION

The results presented in this section were obtained using
Matlabr, and were run on a PC with Intel Core2Quad

 A Bayesian Formulation for Color Naming

• For assigning a color name to a triplet, we have a likelihood term which is 
the color naming fuzzy vectors of  the lookup table, and a prior term 
induced by a cooccurrence matrix, M. The color naming problem can be 
formulated in a Bayesian fashion as:

Border of Proposals Pool RGB Sub-cube
Centroid of Sub-cubeMostly-red Proposals

Fig. 2: An illustration of the proposals pool constructed for
every sub-cube in the RGB cube. The normalized word counts
of the shown proposals are propagated to the RGB triplets in
the sub-cube by means of graph transduction. Please see text
for more details.

responding linear system given by eqn.(1) and eqn.(2), to get
a vector of scores whose length equals to the cardinality of
{Th}, and whose elements indicate the degree of acceptance
of the proposals by each member in {Th}. The constructed
graph is shown in Fig. 3. The entries of the Laplacian matrix
of this graph are calculated using the kernel function given by

k(Xi, Xj) =
ek(Xi, Xj)

[ed(Xi) ed(Xj)]�
, where (3a)

ek(Xi, Xj) = e�
kXi�Xjk

2

2�2 , and (3b)

ed(Xi) =
nX

j=1

ek(Xi, Xj), (3c)

where n is the dimension of the Laplacian (square) matrix and
Xi (and similarly Xj) is defined as the RGB feature vector.

After obtaining the vector F , by solving eqn.(2), we deter-
mine the vector F s which is comprised of the elements in F
that corresponds to the testing points in the constructed graph.
F s is the vector of scores which indicates the coherency be-
tween the triplets of a sub-cube and its proposals. We define
Cih, the color naming vectors of the triplets {Th} as:

Cih :=
1

N

NX

n=1

F s
n ⇥Wn, (4)

where N is the number of dominant color names in the sphere
of proposals, F s

n is F s for the color name n and Wn is the
1 ⇥ 11 vector that is comprised of the maximum normalized
word count that the proposals have for every color name. Ac-
cordingly, the fuzzy color naming vectors of the RGB triplets
in a sub-cube are defined as the averages of the outer products
of the vectors indicating their acceptance for the proposals
and the vectors representing the maximum normalized word
count for every color name across all the proposals.
A Bayesian Formulation for Color Naming: Following the
authors of [5, 3], we aim to adapt our proposed approach
so that an image ‘color label’ or ‘region information’ can
be taken into consideration while assigning color names to

T1 T3

P3

RGB Triplets  
in Sub-cube

Proposals 
of a Sub-cube P1 P2

T8

Fig. 3: An illustration of the graph constructed to propagate
fuzzy color naming vectors from scarce manually-labelled
proposals to every triplet in the RGB cube. Some edges are
not shown for clarity of presentation. Please see text for more
details.

pixels in that image or image region. The computed lookup
table is equivalent to a distribution over RGB triplets repre-
senting the color names. In the terminology of the authors
of [5, 3], this is the distribution over words representing the
topics, p(w|t), which can be used to compute the probability
of a topic given a word by assuming a uniform prior over the
topics, p(t|w) / p(t)p(w|t). Thus, the probability of a color
name (topic) given: 1) an RGB triplet (word) and 2) an image
color label can be formulated as:

p(t|w,L) / p(w|t)p(t|L) (5)

where L is an image color label, or generally, a prior over the
frequency of color names in an image or a region in an image.

Counting on the intuition that colors which often co-occur
are more likely to affiliate to the same color name, we com-
puted a co-occurrence matrix, M, for the color names. An
entry in this 11 ⇥ 11 co-occurrence matrix is equal to the
normalized count of the co-occurrence of those color names
among the most likely K (K = 3 in our experiments) color
names for all the triplets in the lookup table. For assigning
a color name to a particular triplet Ti in the RGB cube, we
have a likelihood term which is the color naming fuzzy vec-
tors of the lookup table, and a prior term induced by the co-
occurrence matrix. Thus, the color naming problem can be
formulated in a Bayesian fashion as:

p(l|Ti, L) / p(Ti|l)p(l|L) (6)

where p(l|Ti, L) is the probability of assigning a color name l
to the triplet Ti, given that the color label of the whole image
is L. To bias the color naming with our prior, we determine
the index of the maximum value in the vector Ci ⇥M�

L, where
ML is the column corresponding to L in M and � is a weight
for the prior. In both cases, we denote the maximum value in
Ci as c⇤il.

4. RESULTS AND DISCUSSION

The results presented in this section were obtained using
Matlabr, and were run on a PC with Intel Core2Quad
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2.66GHz processor and 4GB of RAM. Since the PLSA-
based methods of PLSA-ind and PLSA-reg have been shown
to outperform the chip-based methods [6, 7, 8, 9], we com-
pare the performance of our method with the former two
methods only, in addition to the Dominant-Associative (DA)
color naming of [12]. We had no access to the MCN dataset
of [13]. It is worth mentioning that PLSA-ind and PLSA-reg
represent two color naming algorithms that assign a color
name for CIELab triplets with and without taking region in-
formation into consideration, respectively. Throughout this
section, our proposed approaches of color naming (with and
without considering prior information) will be referred to as
CTR and CTI respectively. The performance of our method
was found to be consistent across RGB and CIELAB color
spaces. Hence, we show results for the former space only.

The performance of the proposed method is evaluated on
the eBay image dataset2. This dataset is comprised of 4 object
categories, namely, cars, shoes, dresses and pottery. For every
category, there are 12 images for each of the 11 basic color
names. Only pixel annotation is considered as an application
of color naming. Evaluating the efficiency of the proposed
method in object retrieval is left for future work.

Table 1 shows a comparison of the pixel annotation score
for the aforementioned methods with the proposed method.
Every figure represents the percentage of correctly-color-
named pixels in every object category. We present our results
for rank 1, 2, and 3 classifications. Results show that our
CTR-Rk1 consistently outperforms PLSA-reg and DA color
naming. In practice, a rank ‘N’ color-naming map can be ob-
tained by optimizing a graph, using graph cuts for example,
to ensure the smoothness of the assigned labels, i.e., every
pixel is allowed a label just from its most probable ‘N’ labels.

Table 1: Comparison of pixel annotation scores of the meth-
ods proposed in [5] and [12] with our method. The third and
the fourth sections of the table show the results of annotating
pixels with and without considering the image label prior. For
the two methods, we show the score for rank 1 (Rk1), rank 2
(Rk2), and rank 3 (Rk3) labellings.

Method Cars Shoes Dresses Pottery Overall
PLSA-ind [5] 56 77 80 70 70.6
PLSA-reg [5] 74 94 85 82 83.4
DA [12] 63 88 85 79 78.8
CTI-Rk1 51.1 64 69.2 57.2 60.4
CTI-Rk2 70.7 81.7 86.5 77.5 79.1
CTI-Rk3 78.6 88.2 91.3 85.4 85.9
CTR-Rk1 88.1 94 94.9 92.3 92.3
CTR-Rk2 88.6 94.2 95 92.7 92.6
CTR-Rk3 89.1 94.4 95.1 93.4 93

Figure 4 depicts the results of the proposed method on
eBay dataset. The 1st, 2nd, 3rd, and 4th columns show the

2http://lear.inrialpes.fr/people/vandeweijer/color names.html

Fig. 4: Results of the proposed color naming method on the
eBay dataset. From left to right: the original image, our graph
cuts-smoothed CTI-Rk3 and CTR-Rk3 color maps, and the
color map of PLSA-bg* [3].

Fig. 5: Results of the proposed method on the BSD500 seg-
mentation dataset. From left to right: original image, CTI-
Rk1 and graph-cuts-smoothed CTI-Rk3 maps respectively.

original image, our CTI-Rk3 and CTR-Rk3 color maps ob-
tained by solving a graph labelling problem using graph cuts
[21, 22, 23, 24], and finally the color map of PLSA-bg* [3].
The upper row is for a white car while the lower row is for a
grey pottery. While the pixel-level annotation of the proposed
method, in some cases, assigns chromatic colors (e.g., green)
to achromatic pixels (e.g., grey), the region-level annotation
ameliorates this problem to a large extent, while achieving
the highest score per object class and over the whole dataset
as well (Table 1). Figure 5 depicts the results of the pro-
posed method on two images of the BSD500 segmentation
dataset. The 1st, 2nd, and 3rd columns show the original im-
age, the CTI-Rk1, and the graph-cuts-smoothed CTI-Rk3 re-
spectively.

5. CONCLUSION

In this paper, we propose a novel color reduction/naming
scheme based on human categorical perception. Subjective
experiments were conducted to sparsely sample and label the
RGB cube and graph transduction was adopted to densely-
label the whole cube. We contributed a look-up table for
fuzzy color naming which has shown to achieve notable en-
hancements over previously proposed methods. Future direc-
tions include using the proposed method for object retrieval
and tracking, and for scene classification.
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fuzzy color naming which has shown to achieve notable en-
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tions include using the proposed method for object retrieval
and tracking, and for scene classification.
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Every figure represents the percentage of correctly-color-
named pixels in every object category. We present our results
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naming. In practice, a rank ‘N’ color-naming map can be ob-
tained by optimizing a graph, using graph cuts for example,
to ensure the smoothness of the assigned labels, i.e., every
pixel is allowed a label just from its most probable ‘N’ labels.

Table 1: Comparison of pixel annotation scores of the meth-
ods proposed in [5] and [12] with our method. The third and
the fourth sections of the table show the results of annotating
pixels with and without considering the image label prior. For
the two methods, we show the score for rank 1 (Rk1), rank 2
(Rk2), and rank 3 (Rk3) labellings.

Method Cars Shoes Dresses Pottery Overall
PLSA-ind [5] 56 77 80 70 70.6
PLSA-reg [5] 74 94 85 82 83.4
DA [12] 63 88 85 79 78.8
CTI-Rk1 51.1 64 69.2 57.2 60.4
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Fig. 4: Results of the proposed color naming method on the
eBay dataset. From left to right: the original image, our graph
cuts-smoothed CTI-Rk3 and CTR-Rk3 color maps, and the
color map of PLSA-bg* [3].
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original image, our CTI-Rk3 and CTR-Rk3 color maps ob-
tained by solving a graph labelling problem using graph cuts
[21, 22, 23, 24], and finally the color map of PLSA-bg* [3].
The upper row is for a white car while the lower row is for a
grey pottery. While the pixel-level annotation of the proposed
method, in some cases, assigns chromatic colors (e.g., green)
to achromatic pixels (e.g., grey), the region-level annotation
ameliorates this problem to a large extent, while achieving
the highest score per object class and over the whole dataset
as well (Table 1). Figure 5 depicts the results of the pro-
posed method on two images of the BSD500 segmentation
dataset. The 1st, 2nd, and 3rd columns show the original im-
age, the CTI-Rk1, and the graph-cuts-smoothed CTI-Rk3 re-
spectively.

5. CONCLUSION

In this paper, we propose a novel color reduction/naming
scheme based on human categorical perception. Subjective
experiments were conducted to sparsely sample and label the
RGB cube and graph transduction was adopted to densely-
label the whole cube. We contributed a look-up table for
fuzzy color naming which has shown to achieve notable en-
hancements over previously proposed methods. Future direc-
tions include using the proposed method for object retrieval
and tracking, and for scene classification.

• We compared our results with 3 SOTA techniques 
[3, 8, 9] on 2 standard datasets (eBay and BSD500)  

• Experiments were conducted on 2 color coordinate 
systems, RGB and CIEL*a*b, and the performance 
was found to be consistent across both systems.

Table 1: Comparison of  pixel annotation scores of  the 
methods proposed in [8] and [9] with our method. 
The third and the fourth sections of  the table show 
the results of  annotating pixels with and without 
considering the image label prior. For the two 
methods, we show the score for rank 1 (Rk1), rank 2 
(Rk2), and rank 3 (Rk3) labelings.

Fig. 6: Results of  the proposed color naming method 
on the eBay dataset. From left to right: the original 
image, our graph cuts-smoothed CTI-Rk3 and CTR-
Rk3 color maps, and the map of  PLSA-bg* [3].

• We show results for CTI (no prior information) 
and CTR (taking prior information into 
consideration) approaches for color naming. 

• We also show results for rank 1 (Rk1) through 
rank 3 (Rk3) classification. 

• For visualization purposes, Rk3 results are 
shown as graph cuts-smoothed color maps.

Fig. 7: Results of  the proposed method on 
the BSD500 segmentation dataset. From left 
to right: original image, CTI-Rk1 and graph-
cuts-smoothed CTI-Rk3 maps.

• In these methods, a graph with nodes representing the data points is constructed, where 
the edge weights are induced by a kernel and represent the similarities between the data 
points. 

• The discrete approximation for the original optimization problem is given by

•  The n-dimensional vector F  can then be obtained by solving the linear system given by
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ABSTRACT

This paper addresses the problem of color reduction which
aims at computing a compact representation of a color coor-
dinate system. Color reduction has shown to be a significant
operation in several applications such as object tracking and
surveillance systems. In experimental psychology, categor-
ical perception refers to the process in which a continuous
spectrum of stimuli is perceived as different qualitative cat-
egories. By capitalizing on studies that have suggested the
existence of eleven focal colors, we conducted subjective ex-
periments which exploited the categorical nature of human
color perception. The contributions of this paper are: 1) a
novel color reduction scheme based on human perception and
graph transduction, 2) a look-up table that reduces the RGB
color coordinate system to eleven salient colors. Objective
results on standard datasets show notable improvements over
the state-of-the-art methods.

Index Terms— Color, Reduction, Naming, Transduction,
Propagation

1. INTRODUCTION AND RELATED WORK

These guidelines include complete descriptions of the fonts,
spacing, and related information for producing your proceed-
ings manuscripts. Please follow them and if you have any
questions, direct them to Conference Management Services,
Inc.: Phone +1-979-846-6800 or email to
ip17@securecms.com.

2. LEARNING BY TRANSDUCTION

For some classification/labelling problems, learning a general
rule from training data (induction), may turn out to be unnec-
essary [1]. Alternatively, the labelled and the unlabelled data
can be used to classify the testing points.

Figure 1 shows an instance of the two half-moons configu-
ration. In this context or scenario, all the observed data points
(labelled and unlabelled) are available beforehand. The la-
belled data are shown as green and orange points in Fig. 1(a).
The goal is to label the rest of the grey points with a binary

Thanks to XYZ agency for funding.

Background Subtraction in Video Sequences Using 
Image Skimming and Transduction

Transduction

(a)

Background Subtraction in Video Sequences Using 
Image Skimming and Transduction

Transduction

(b)
Fig. 1: The iconic illustration of transduction on the two half-
moons configuration. Details are provided in the text.

label (either green or orange). Using just the labelled points
to infer a predictive model may result in fitting a hyperplane
for example, as shown in Fig. 1(a). This results in assigning
wrong labels, to the right-most and the left-most grey (test-
ing) points. However, if the points are well-separated in the
feature space, i.e., high-margin exists, we can learn a func-
tion from all the observed data points with the condition that
it passes through the regions with low-density in the feature
space; this is shown as the black curve in Fig. 1(b).

In this research, we infer color names (labels) of RGB
triplets using the graph Laplacian-based transduction method
[2, 3]. Figure 1 depicts the goal of transduction, that is to
find a smooth mapping f that varies only in regions of low
density in the feature space, and at the same time assign to
every training point the label that is associated with it, or a
very close label, i.e., f(Xi) = Yi, where Yi is the label of the
training point Xi. The aforementioned requirements define
an optimization problem for which a discrete alternative was
proposed in [4].

For discretization, graph Laplacian methods are adopted;
they are based on a discrete approximation of the s-weighted
Laplacian operator [3]. In these methods, a graph with nodes
representing the data points (the Xis) is constructed, and the
weights of the edges of that graph are induced using a kernel
(often an exponential kernel) that represents the similarities
(affinities) between the Xis in the feature space. The discrete
approximation for the original optimization problem is given
by

min
F2Rn

(F � Y )TC(F � Y ) + FTL F, (1)

where n is the total number of labelled and unlabelled data
points, Y is the n-dimensional vector in which the ith ele-
ment is Yi for a labelled point, and 0 for a test point, C is the
diagonal n⇥ n matrix in which the ith diagonal element is ci
for a labelled point, and 0 for a test point, and L is the graph

(1)Laplacian. The n-dimensional vector F can then be obtained
by solving the linear system given by

(L+ C) F = C Y. (2)

It should be noted that for binary labelling problems, such as
the case in Fig. 1, the output vector F should be thresholded.
The elements in F that correspond to the testing points in the
constructed graph are the labels of the testing points. Trans-
ductive inference has been introduced to several computer vi-
sion problems including segmentation [3] and matting [5, 6].

3. PROPOSED METHOD

We propose a semi-supervised learning-based scheme for
color reduction. Color names (Labels) for sparse triplets in
the RGB cube are first provided by a group of volunteers to
enforce a perceptually relevant labelling. Then, the acquired
sparse labels are propagated to the whole RGB cube by means
of the transduction of a graph whose nodes/vertices are all
the triplets in the RGB cube. We start by detailing the setup
and the procedure of the experiment used to gather sparse
color labels in the RGB cube. Then, we present our graph
transduction-based approach for constructing a lookup table
that maps every RGB triplet to a fuzzy color naming vec-
tor. That vector indicates how likely a particular triplet is
affiliated with each of the 11 Basic Color Labels.

On voluntary basis, thirty-one students and researchers at
the University of Ottawa, Canada and INRIA Rennes, France,
took part in the experiment. Prior to providing color labels,
the participants were tested for color vision problems using
the Ishihara color-blindness test. Stimuli were displayed on
a variety of monitors in average office environments. All
computers were equipped with recent graphic card set at 16
millions colors. The procedure of our experiment was con-
strained by the number of available volunteers as well as the
longest time period the volunteers could afford to participate
in the experiment. Each of the thirty-one volunteers was as-
signed three images (a set of 93 training images, {Ir

k}) to be
labelled within a maximum of twenty minutes. Every image
was shown as a set of SLIC [7] super-pixels and the volun-
teers were instructed to give every super-pixel one of the 11
Basic Color Labels. This results in a mapping from the RGB
triplets – represented by the constituent pixels of a particular
super-pixel – to the label set, the 11 Basic Color Terms.

Contrary to chip-based methods, we require the set {Ir
k}

to sample the RGB cube efficiently, i.e., to ensure that the
RGB triplets in the selected images are well distributed within
the cube. Towards this goal, and with the XXXXXX dataset
as the super-set of training images, we solved a knapsack
problem to single out 93 images so that we maximize the cov-
erage of the RGB cube.

The last step in the procedure of the experiment is to com-
pute the Normalized Word Count (as in the terminology of

Border of Proposals Pool RGB Sub-cube
Centroid of Sub-cubeMostly-red Proposals

Fig. 2: An illustration of the proposals pool constructed for
every sub-cube in the RGB cube. The normalized word
counts of the shown proposals are propagated to the RGB
triplets in the sub-cube by means of graph transduction.
Please see text for more details.

the authors of [8, 9]) for {T r
j } – the set of RGB triplets con-

tained in {Ir
k}. A triplet in this set might have existed several

times in {Ir
k}, and might have been assigned different color

labels by different/same participants as well since the context
of an image was found to influence significantly the process
of color naming. The normalized word count for T r

j 2 {T r
j },

Cn
j , is a vector with eleven elements, each of which is the

number of times the triplet T r
j was assigned the color name

cl; l = 1, 2, · · · , 11 divided by the total number of occur-
rences of T r

j in {Ir
k}. The triplets in the RGB cube are given

the symbol {Ti} where i = 1, · · · , 2563. The lookup table
that realizes the proposed color reduction scheme maps {Ti}
to {Ci} where every Ci := [c1, · · · , cl, · · · , c11] with compo-
nents indicating how likely Ti is affiliated to each of the 11
basic color labels.

We start the label propagation step by dividing the RGB
cube into H sub-cubes. For each of these sub-cubes, we com-
pute T r

jh – a pool of proposals that is comprised of the subset
of T r

j that are not farther than a certain Euclidean distance
(in the RGB color coordinate system) away from the centroid
of the sub-cube under consideration. Figure 2 depicts an ex-
ample of an RGB sub-cube and its corresponding sphere of
proposals, which is shown as a solid black circle. In this ex-
ample, the proposals lying within the sphere that surrounds
the shown RGB sub-cube are mostly-red, mostly-pink, and
mostly-orange; this is determined by their normalized word
counts, i.e., a proposal is mostly-red when the largest element
in its normalized word-count vector is the one corresponding
to the red color name. We call the red, the pink, and the or-
ange: the dominant color names for the sub-cube in Fig. 2.

We loop over the sub-cubes, and for every dominant color
name we construct a graph with nodes representing the RGB
triplets in the sub-cube, {Th}, in addition to the proposals
– the RGB triplets that are affiliated with the color name of
the current loop. Then, we solve a graph transduction prob-
lem, by minimizing an objective function and solving a cor-
responding linear system given by eqn. 1 and eqn. 2, to get a
vector of scores whose length equal to the cardinality of {Th},

(2)

• For discretization, graph Laplacian methods are adopted. They are based on a discrete 
approximation of  the s-weighted Laplacian operator [10]. 
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