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Increased prevalence of video content

Creator’s side

• Visual content simpler to create and share than ever before

• Easy-to-use tools for editing videos are already widely present

Analyst’s side

• Some content is altered with malicious intents

• Few tools exist to automatically assess authenticity of video data
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Chroma keying

● One manipulation attack is chroma keying (e.g. greenscreening)

● If done well, forged video offers no visual clues on manipulation 
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Assumption

● Each camera has its own, unique, processing pipeline

● They introduce characteristic, high frequent noise, in each frame and 

over frames

● Often not visually perceivable

5

,
Compression

Camera unique components and settings/parameters

 Introducing unique high frequent noise
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Assumption

● Each camera has its own, unique, processing pipeline

● They introduce characteristic, high frequent noise, in each frame and 

over frames

● Often not visually perceivable

 Manipulations break those statistics or make them inconsistent

5
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Compression

Camera unique components and settings/parameters

 Introducing unique high frequent noise
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Feature extraction from noise

Inconsistencies in noise patterns well exploited in different fields:

For example, in “steganography” [1] or “forgery detection in images” [2]
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[2] D. Cozzolino, G. Poggi, L. Verdoliva, “Splicebuster: A new blind image splicing detector,” in IEEE International Workshop on Information 
Forensics and Security, Nov. 2015
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Common algorithm:

1. High-pass filtering input image 𝐼, returning residual image 𝑅, 
where image 𝐼 has pixels at 𝐼𝑥𝑦 ∈ [0|255]
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where image 𝐼 has pixels at 𝐼𝑥𝑦 ∈ [0|255]
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→ large residuals (like edges) are all mapped to 𝑡 or −𝑡
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Feature extraction from noise

Inconsistencies in noise patterns well exploited in different fields:

For example, in “steganography” [1] or “forgery detection in images” [2]

Common algorithm:

1. High-pass filtering input image 𝐼, returning residual image 𝑅, 
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∗ = min{𝑡,max{−𝑡, 𝑟𝑜𝑢𝑛𝑑(

𝑅𝑥𝑦

𝑞
)}

→ large residuals (like edges) are all mapped to 𝑡 or −𝑡
→ the “interesting” coefficents lie between [−𝑡 + 1 | 𝑡 − 1]

3. Build co-occurences of length 𝑑: 𝐶𝑛𝑚 = 𝑅𝑥𝑦
∗ , 𝑅𝑥𝑦+1

∗ , … , 𝑅𝑥𝑦+𝑑
∗

→ incorporates neighborhood relationships
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Descriptors applied to image forensics
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Descriptors applied to image forensics

7

-2 -1 0 1 2

-2 8087 1256 2317 2713 15095

-1 1163 947 12097 11592 2600

0 2147 11892 84896 10277 2475

1 2732 11587 10317 854 1255

2 15340 2755 2182 1316 8208

High-pass

[1,-3,3,-1]

Quantize

& truncate

Co-occurrence 
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Directions
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Video: 

• Enlarges feature space 

→ time offers new, third dimension

• Can be used to track motion by optical flow 

→ to align slided windows of features
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Classification pipeline

9

Feature Extraction

• Histogram of co-occurrence 
residuals

• In different directions

• On sliding windows

• Optional: align features by 
“optical flow”

Classification

• Calculate 
mahalanobis
distance

• Can be 
thresholded

Decision

• Frame 
authentic?

• Frames from 
same 
camera?

Training
Train on known pristine frames
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Mahalanobis distance as heatmap

● Mahalanobis distances can be illustrated in heatmaps

● Objects spliced onto the background are revealed visually
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Dataset
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Evaluation

13

• Suggested method detects splicing reliable

• Incorporating optical flow to can improve results
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Evaluation under compression

14

Secondary recompression of spliced material: 

• Weakens its localization

• Detection results correlates (negatively) with compression factor
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Related work

● Photo-response nonuniformity (PRNU) based: 

● PRUN is a profoundly unique pattern inherently

present in any imaging device [1]

● Also applied to localize video manipulations [2]
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Example PRNU, amplified
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Related work

● Photo-response nonuniformity (PRNU) based: 

● PRUN is a profoundly unique pattern inherently

present in any imaging device [1]

● Also applied to localize video manipulations [2]

● Autoencoder (AE) based [3]:

● AEs are a special neural network architecture

● Training subject to reconstruct input from compressed state 𝑧 with little 

error as possible: min{ℒ 𝑓, መ𝑓 } → If new input differs, ℒ becomes large
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Decode

Encode

Compressed state 𝑧

Input vector 𝑓

Output vector መ𝑓

Example PRNU, amplified
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Comparison with other methods

15

• Suggested framework can produce better results then other works

• AE does not utilize information about movement in videos, 

like incorporating optical flow in the suggested framework

• PRNU might have difficulties to build a meaningful model 

from correlated frames

avr
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Summary and Outlook

Presented Algorithm:

● Distinguishes different noise distributions, present in a spliced video

● Tested successfully on green screen splicing

● Additional secondary compression influences performance

Future Work:

● Build up bigger database

● Apply algorithms to different kinds of forgeries

● Also apply to video source identification (e.g. on non-forged videos)
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Thanks for your attention!

Questions?


