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Increased prevalence of video content = F=

Creator’s side

e Visual content simpler to create and share than ever before
e Easy-to-use tools for editing videos are already widely present
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Increased prevalence of video content = F=

Creator’s side

e Visual content simpler to create and share than ever before
e Easy-to-use tools for editing videos are already widely present

Analyst’s side

e Some content is altered with malicious intents
e Few tools exist to automatically assess authenticity of video data
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Chroma keying ==

e One manipulation attack is chroma keying (e.g. greenscreening)
e If done well, forged video offers no visual clues on manipulation
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Assumption = 5=

e Each camera has its own, unique, processing pipeline

e They introduce characteristic, high frequent noise, in each frame and
over frames

e Often not visually perceivable
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e Each camera has its own, unique, processing pipeline

e They introduce characteristic, high frequent noise, in each frame and
over frames

e Often not visually perceivable

» Manipulations break those statistics or make them inconsistent
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Feature extraction from noise

Inconsistencies in noise patterns well exploited in different fields:
For example, in “steganography” [1] or “forgery detection in images” [2]

[1] J. Fridrich, J. Kodovsky “Rich Models for Steganalysis of Digital Images”, in IEEE Transactions on Information Forensics and Security,

June 2012
[2] D. Cozzolino, G. Poggi, L. Verdoliva, “Splicebuster: A new blind image splicing detector,” in IEEE International Workshop on Information

Forensics and Security, Nov. 2015
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Inconsistencies in noise patterns well exploited in different fields:
For example, in “steganography” [1] or “forgery detection in images” [2]

Common algorithm:

1. High-pass filtering input image I, returning residual image R,
where image I has pixels at I,, € [0[255]
— retrieves noise domain
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Feature extraction from noise = =

Inconsistencies in noise patterns well exploited in different fields:

For example, in “steganography” [1] or “forgery detection in images” [2]

Common algorithm:

1. High-pass filtering input image I, returning residual image R,
where image I has pixels at I,, € [0[255]
— retrieves noise domain

2. Quantize and truncate: Ry, = min{t, max{—t, round( )}

— large residuals (like edges) are all mapped to t or —t
— the “interesting” coefficents lie between [-t + 1 | t — 1]

3. Build co-occurences of length d: Cpy = {Ryy, Riyt1s -0 Ryyral
— incorporates neighborhood relationships

[1] J. Fridrich, J. Kodovsky “Rich Models for Steganalysis of Digital Images”, in IEEE Transactions on Information Forensics and Security,

June 2012

[2] D. Cozzolino, G. Poggi, L. Verdoliva, “Splicebuster: A new blind image splicing detector,” in IEEE International Workshop on Information

Forensics and Security, Nov. 2015



Descriptors applied to image forensics = FF

Grayscale input frame
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Descriptors applied to image forensics = 5=

Grayscale input frame
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Directions =5 aws
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Directions =5 aws
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Directions = =

Video:

* Enlarges feature space
— time offers new, third dimension

« Can be used to track motion by optical flow
— to align slided windows of features
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Classification pipeline

Feature Extraction Classification Decision

e Histogram of co-occurrence e Calculate * Frame
residuals mahalanobis authentic?

¢ |In different directions distance ®* Frames from

e On sliding windows e Can be same

e Optional: align features by thresholded camera?

“optical flow”

Training

Train on known pristine framty




Classification pipeline : =<5

Extraction Estimation

Feature Extraction Classification Decision
e Histogram of co-occurrence e Calculate * Frame
residuals mahalanobis authentic?
¢ |[n different directions distance * Frames from
e On sliding windows e Can be same
. : ?
e Optional: align features by thresholded Calle s
“optical flow”
Training
Train on known pristine frames./
Feature .| Mahalanobis
Extraction " distance :
E Heat Maps
Feature Parameter E




Mahalanobis distance as heatmap = 5=

e Mahalanobis distances can be illustrated in heatmaps
e Objects spliced onto the background are revealed visually
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Dataset = =<5
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Evaluation

Van Damme
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» Suggested method detects splicing reliable

* Incorporating optical flow to can improve results
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Evaluation under compression T

avr TPR
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Secondary recompression of spliced material:
« Weakens its localization
« Detection results correlates (negatively) with compression factor
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Related work s ===

e Photo-response nonuniformity (PRNU) based: §
e PRUN is a profoundly unique pattern inherently §
present in any imaging device [1] ‘

e Also applied to localize video manipulations [2] §

e T vt
NU, amplified

Example PR

[1] J. Lukas, J. Fridrich, M. Goljan, “Detecting digital image forgeries using sensor pattern noise,” in Proceedings of the SPIE, vol. 6072, 2006
[2] W. Van Houten, Z. Geradts, “Source video camera identification for multiply compressed videos using sensor photo response non-
uniformity” in Proc. Of SPIE Security, Steganography, and Watermarking of Multimedia Contents IX, Feb. 2007

[3] L. D’Amiano, D. Cozzolino, G. Poggi, L. Verdoliva: “Autoencoder with Recurrent Neural Networks for Video forgery detection”, in

IS&T Electronic Imaging: Media Watermarking, Security and Forensics, Feb. 2017

ICIP 2017 | Residual-based forensic comparison of video sequences 33



Related work s ===

e Photo-response nonuniformity (PRNU) based: &%
e PRUN is a profoundly unique pattern inherently §
present in any imaging device [1]
e Also applied to localize video manipulations [2]
e Autoencoder (AE) based [3]:
e AESs are a special neural network architecture

e Training subject to reconstruct input from compressed state z with little
error as possible: min{ZL(f, f)} — If new input differs, £ becomes large

-nil-._s-:-_"' b

Exmple PRNU, ampliied

Output vector f

f

Compressed state z

!

Input vector f
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Comparison with other methods ==
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« Suggested framework can produce better results then other works
« AE does not utilize information about movement in videos,

like incorporating optical flow in the suggested framework
* PRNU might have difficulties to build a meaningful model

from correlated frames



Summary and Outlook

Presented Algorithm:
o Distinguishes different noise distributions, present in a spliced video
o Tested successfully on green screen splicing
o Additional secondary compression influences performance

Future Work:
o Build up bigger database
o Apply algorithms to different kinds of forgeries
o Also apply to video source identification (e.g. on non-forged videos)



Thanks for your attention!
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