

Aligned Discriminative Pose Robust Descriptors for Face and Object Recognition

Soubhik Sanyal, Devraj Mandal, Soma Biswas

Image Analysis and Computer Vision Lab Department of Electrical Engineering Indian Institute of Science, Bangalore, India

{soubhiksanyal, devraj89, soma.biswas}.ee.iisc.ernet.in

Date 19/09/2017

Outline:

- Introduction and Problem Statement
- Related work and Limitations
- Proposed Framework
- Experimental Results
- Analysis of the Descriptors
- Conclusion
- References

Introduction

Biometrics

Tagging friends

Catching Criminals!

Autonomous Cars (Images are taken from Google)

Online Payments

Scene Understanding

Problem Statement

(Images are taken from MBGC dataset and COIL 100 dataset)

Related Work

Dictionary Learning [CVPR 2012, ICCV 2013, PAMI 2016]

Metric Learning [CVPR 2012, PAMI 2016]

Convolutional Neural Networks [CVPR 2014, BMVC 2015]

(Images are taken from Google)

Limitations of the Existing Approaches

□ Required samples from every available pose

□ Poor performance for unseen poses

Proposed Framework: Computation of low level features

Proposed Framework: Generating synthetic pose subspaces

Proposed Framework: Generating synthetic pose subspaces

□ Source Subspace: $P_k \in \mathbb{R}^{D \times d}$ and target subspace: $P_{k+1} \in \mathbb{R}^{D \times d}$

Geodesic Flow: $\psi(t) = P_k U_1 \Gamma(t) - R_k U_2 \Sigma(t)$

□ Orthogonal Complement of $P_k \Rightarrow R_k \in \mathbb{R}^{D \times (D-d)}$ such that $R_k^T P_k = 0$

 \Box $t \in [0,1]$ and $\psi(0) = P_k$ and $\psi(1) = P_{k+1}$

 $\Box P_k^T P_{k+1} = U_1 \Gamma V^T$

 $\Box R_k^T P_{k+1} = -U_2 \Sigma V^T$

□ Γ, Σ ∈ $\mathbb{R}^{d \times d}$ diagonal matrices with diagonal elements as $\cos \theta_i$, $\sin \theta_i$ for i = 1, 2, ..., d.

 $\square \theta_i$: principal angles between P_k and P_{k+1}

Proposed Framework: Flow Chart of computing ADPR Descriptor

Aligning Every Subspace with the Frontal one

Proposed Framework: Motivation for ADPR

□ Computational time to recognize a subject is higher for DPFD [ICCV 2015] if the number of subspaces increased.

□ Matching performance is considerably better if gallery and probe both are in frontal pose as compared to both being in same non-frontal pose.

□ Experiment: 100 subjects from Multi-PIE [R. Gross *et al.* 2007] dataset with frontal pose and illumination.

□ Down-sampled and up-sampled to get low resolution version: Rank-1 recognition rate = 80%.

□ Similar experiment with Pose04_1 (30 degree): Rank-1 recognition rate = 67%.

Proposed Framework: Computation of Aligning Matrices

Aligning Every Subspace with the Frontal one

 $\Box A_i^* = argmin_{A_i} \|F_i A_i - F_f\|_F^2$

 \square F_i : i^{th} subspace, A_i : i^{th} alignment matrix, F_f : frontal subspace

$$\Box A_i^* = argmin_{A_i} \|F_i^T F_i A_i - F_i^T F_f\|_F^2$$

$$\Box A_i^* = argmin_{A_i} \|A_i - F_i^T F_f\|_F^2$$

 $\Box A_i^* = F_i^T F_f$

□ h subspaces \implies (h-1) number of alignment matrices

□ Size of ADPR descriptor with six subspaces: $128 \times 6 = 768$

■Size of DPFD descriptor with six subspaces: 24768 [ICCV 2015]

Proposed Framework: Projection into the intermediate subspaces

Non-matched Pairs

□ Mahalanobis metric: $d^2(x_i, x_j) = (x_i - x_j)^T M(x_i - x_j)$

Decision on matched or non-matched pairs depending upon likelihood ratio test

$$\delta(x_i, x_j) = log\left(\frac{p(x_i, x_j | H_0)}{p(x_i, x_j | H_1)}\right)$$

□ H₀: Hypothesis that the pair is non-matched, H₁: Hypothesis that the pair is matched

Probabilities in difference space

$$p(x_{i}, x_{j}|H_{0}) = \frac{1}{\sqrt{2\pi \left|\Sigma_{n_{ij}=0}\right|}} e^{\left(-\frac{1}{2}x_{ij}^{T}\Sigma_{n_{ij}=0}^{-1}x_{ij}\right)}$$
$$p(x_{i}, x_{j}|H_{1}) = \frac{1}{\sqrt{2\pi \left|\Sigma_{n_{ij}=1}\right|}} e^{\left(-\frac{1}{2}x_{ij}^{T}\Sigma_{n_{ij}=1}^{-1}x_{ij}\right)}$$

 $\Sigma_{n_{ij}=1} = Covariance matrix of matched pairs$ $\Sigma_{n_{ij}=0} = Covariance matrix of nonmatched pairs$ $x_{ij} = x_i - x_j = Difference Space$

□ After putting the probabilities and simplification

$$\delta(x_{ij}) = \log \left(\frac{\frac{1}{\sqrt{2\pi |\Sigma_{n_{ij}=0}|}} e^{\left(-\frac{1}{2}x_{ij}^T \Sigma_{n_{ij}=0}^{-1} x_{ij}\right)}}{\frac{1}{\sqrt{2\pi |\Sigma_{n_{ij}=1}|}} e^{\left(-\frac{1}{2}x_{ij}^T \Sigma_{n_{ij}=1}^{-1} x_{ij}\right)}} \right)$$
$$\delta(x_{ij}) = x_{ij}^T \left(\sum_{n_{ij}=1}^{-1} - \sum_{n_{ij}=0}^{-1} \right) x_{ij}$$

Analysing

$$\mathsf{M} = \left(\Sigma_{n_{ij}=1}^{-1} - \Sigma_{n_{ij}=0}^{-1}\right)$$

Proposed Framework: Computation for ADPR

Experimental Analysis:

- □ MultiPIE Dataset [R. Gross *et al.* 2007]: 200 subjects in 5 poses and 20 illumination conditions
- SC Face Dataset [M. Grgic *et al.* 2011]: 130 subjects captured in real surveillance cameras in 5 different poses
- Coil-20 Dataset [S.A. Nene *et al.* 1996]: 20 subjects in multiple views
- RGB-D Dataset [K. Lai *et al.* 2011]: 51 subjects in multiple views

Experiments on Face Recognition Across Pose and Resolution

	1	11	35	
Method	Pose 13_0	Pose 14_0	Pose 05_0	Pose 04_1
MDS Learning [S. Biswas et al. TPAMI 2013]	32.8	44.8	47.0	48.5
LSML [M. Kostinger et al. CVPR 2012]	46.9	53.9	55.2	54.3
GMA [A. Sharma et al. ICCV 2012]	65.0	70.1	70.3	64.2
MvDA [M. Kan <i>et al</i> PAMI 2016]	45.7	55.0	53.8	42.9
FCPRF + LSML [F. Shen et al. PR 2016]	54.0	71.2	73.4	61.0
SCDL [S. Wang et al. CVPR 2012]	66.3	73.0	72.7	64.1
SCDL + LSML	69.1	75.1	74	67.6
CFDL [D.A. Huang et al. ICCV 2013]	65.9	72.0	72.8	64.7
CFDL + LSML	68.9	74.1	74.6	68.1
DPFD [ICCV 2015]	74.5	78.0	74.0	70.1
Proposed (ADPR)	75.3	78.0	76.1	72.0

Rank-1 recognition performance (%) for four different probe poses, averaged over the different gallery illuminations on the Multi-PIE dataset [R. Gross *et al.* 2007]

Experiments on Real Surveillance Quality Data

Sample faces of Surveillance Cameras (SC) Face Database [M. Grgic *et al.* 2011].

Method	Rank 1 1 CAM	Rank 1 5 CAM
MDS Learning [S. Biswas et al. TPAMI 2013]	30.0	61.1
LSML [M. Kostinger et al. CVPR 2012]	64.7	67.2
GMA [A. Sharma et al. ICCV 2012]	38.2	50.5
FCPRF + LSML [F. Shen et al. PR 2016]	58.0	61.3
SCDL [S. Wang et al. CVPR 2012]	48.2	58.5
SCDL + LSML	48.8	60.0
CFDL [D.A. Huang et al. ICCV 2013]	45.7	62.2
CFDL + LSML	46.3	63.3
DPFD [ICCV 2015]	69.0	-
Proposed (ADPR)	73.3	-

Rank-1 accuracy (%) of the proposed approach and comparison with state-of-the-art approaches on the SC face database [M. Grgic *et al.* 2011].

Experiments on Object Recognition Across Pose

Sample Objects of COIL 20 database [S.A. Nene *et al.* 1996]

Method	Rank-1 Accuracy
MDS Learning [S. Biswas <i>et al.</i> TPAMI 2013]	75.6
LSML [M. Kostinger <i>et al.</i> CVPR 2012]	80.3
GMA [A. Sharma <i>et al.</i> ICCV 2012]	66.1
MvDA [M. Kan <i>et al</i> PAMI 2016]	69.7
SCDL [S. Wang <i>et al.</i> CVPR 2012]	79.2
SCDL + LSML	82.6
CFDL [D.A. Huang <i>et al.</i> ICCV 2013]	78.7
CFDL + LSML	82.0
DPFD [ICCV 2015]	82.2
Proposed (ADPR)	83.0

Rank-1 accuracy (%) of the proposed approach and comparison with other approaches on COIL 20 Database [S.A. Nene *et al.* 1996]

Experiments on RGB-D Data

Sample RGB and Depth Objects of RGB-D Database [K. Lai *et al.* 2011].

Method	Visual-Visual	Depth-Depth
MDS Learning [S. Biswas et al. TPAMI 2013]	82.2	53.9
LSML [M. Kostinger et al. CVPR 2012]	60.1	45.8
GMA [A. Sharma et al. ICCV 2012]	70.6	38.9
MvDA [M. Kan <i>et al</i> PAMI 2016]	77.2	50.6
SCDL [S. Wang et al. CVPR 2012]	80.4	61.1
SCDL + LSML	81.7	62.0
CFDL [D.A. Huang et al. ICCV 2013]	81.0	60.5
CFDL + LSML	82.0	61.3
DPFD [ICCV 2015]	86.0	62.0
Proposed (ADPR)	91.4	69.2

Rank-1 accuracy (%) of the proposed approach and comparison with state-of-the-art approaches on the RGB-D database [K. Lai *et al.* 2011].

Comparison with deep architectures

Method [Face Recognition]	Pose 13_0	Pose 14_0	Pose 05_0	Pose 04_1
VGG-HR-LR-NN	32.2	52.8	53.1	32.8
VGG-HR-LR-ADPR	39.6	54.6	55.3	39.2
VGG-HR-HR-NN	88.3	97.0	97.0	91.3
VGG-HR-HR-ADPR	91.9	98.0	98.0	93.9

Method [Object Recognition]	Visual-Visual
AlexNet-NN	90.2
AlexNet-ADPR	93.4

Comparison with VGG [O. M. Parkhi *et al.* 2015] and AlexNet [A. Krizhevsky *et al.* 2012] using their fc6 layer as low level features.

Experiments done on Multi-PIE dataset [R. Gross et al. 2007] and RGB-D dataset [K. Lai et al. 2011].

Analysis: Descriptor Size vs. Number of Subspaces

Plot of Size of the descriptors vs. Number of Subspaces. Experiments done on SC Face Database [M. Grgic *et al.* 2011].

Analysis: Distance Computation Time vs. Number of Subspaces

Plot of Distance computation Time vs. Number of Subspaces. Experiments done on SC Face Database [M. Grgic *et al.* 2011].

Conclusion:

- Novel discriminative pose-free descriptors (DPF) for matching objects across different poses.
- The approaches does not require separate training for different probe poses/viewpoints. This is an advantage over many other approaches which work well when separate training is performed for different poses encountered during testing.
- Very few poses (as little as two/three) are required during the training phase and the method can generalize to unseen poses.

References

- Soubhik Sanyal, Sivaram Prasad Mudunuri, Soma Biswas, Discriminative Pose-Free Descriptors for Face and Object Matching, In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015.
- Soubhik Sanyal, Devraj Mandal, Soma Biswas, Aligned Discriminative Pose Robust Descriptors for Face and Object Recognition, In Proceedings of the IEEE International Conference in Image Processing (ICIP), 2017.
- Soubhik Sanyal, Sivaram Prasad Mudunuri, Soma Biswas, Discriminative Pose-Free Descriptors for Face and Object Matching, Pattern Recognition, 2017.
- S. Biswas, G. Aggarwal, P. J. Flynn, and K. W. Bowyer, "Pose-robust recognition of low-resolution face images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 12, pp. 3037–3049, 2013.
- M. Kostinger, M. Hirzer, P.Wohlhart, P. M. Roth, and H. Bischof, "Large scale metric learning from equivalence constraints," IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2288–2295, 2012.
- R. Gopalan, R. Li, R. Chellappa, "Domain Adaptation for Object Recognition: An Unsupervised Approach", IEEE International Conference on Computer Vision, 2011.
- R. Basri, T. Hassner, L. Z. Manor, "A General Framework for Approximate Nearest Subspace Search", IEEE International Conference on Computer Viaion Workshop, 2009
- B. Gong, Y. Shi, F. Sha, K. Grauman, "Geodesic Flow Kernel for Unsupervised Domain Adaptation", IEEE conference on Computer Vision and Pattern Recognition, 2012