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Dictionary Learning [CVPR 2012, ICCV 2013, 
PAMI 2016]

Metric Learning [CVPR 2012, PAMI 
2016]

Convolutional Neural Networks [CVPR 2014, BMVC 2015]



Limitations of the Existing Approaches

 Required samples from every available pose

 Poor performance for unseen poses
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Proposed Framework: Computation of low level features
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Proposed Framework: Generating synthetic pose subspaces

9

Source 𝑃𝑘 ∈ ℝ𝐷×𝑑

 Source Subspace: 𝑃𝑘 ∈ ℝ𝐷×𝑑 and target 

subspace: 𝑃𝑘+1 ∈ ℝ𝐷×𝑑

 Geodesic Flow: 𝜓 𝑡 = 𝑃𝑘𝑈1Γ 𝑡 − 𝑅𝑘𝑈2Σ 𝑡

 Orthogonal Complement of 𝑃𝑘 ⇒ 𝑅𝑘 ∈
ℝ𝐷×(𝐷−𝑑) such that 𝑅𝑘

𝑇𝑃𝑘 = 𝑂

 𝑡 ∈ 0,1 and 𝜓 0 = 𝑃𝑘 and 𝜓 1 = 𝑃𝑘+1

 𝑃𝑘
𝑇𝑃𝑘+1 = 𝑈1Γ𝑉

𝑇

 𝑅𝑘
𝑇𝑃𝑘+1 = −𝑈2Σ𝑉

𝑇

 Γ, Σ ∈ ℝ𝑑×𝑑 diagonal matrices with diagonal 

elements as cos 𝜃𝑖 , sin 𝜃𝑖 for 𝑖 = 1,2,…… , 𝑑.

 𝜃𝑖: principal angles between 𝑃𝑘 and 𝑃𝑘+1

Reference: Gopalan, Li and Chellappa, PAMI 2014 
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Virtual subspaces
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Proposed Framework: Flow Chart of computing ADPR Descriptor



Proposed Framework: Motivation for ADPR

 Computational time to recognize a subject is higher for DPFD [ICCV 2015] if the number of 
subspaces increased.

 Matching performance is considerably better if gallery and probe both are in frontal pose as 
compared to both being in same non-frontal pose.

 Experiment: 100 subjects from Multi-PIE [R. Gross et al. 2007] dataset with frontal pose and 
illumination.

 Down-sampled and up-sampled to get low resolution version: Rank-1 recognition rate = 80%.

 Similar experiment with Pose04_1 (30 degree): Rank-1 recognition rate = 67%.
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Proposed Framework: Computation of Aligning Matrices

 𝐴𝑖
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴𝑖 𝐹𝑖𝐴𝑖 −  𝐹𝑓 𝐹

2

 𝐹𝑖: 𝑖
𝑡ℎ subspace, 𝐴𝑖: 𝑖

𝑡ℎ alignment matrix, 

𝐹𝑓 : frontal subspace

 𝐴𝑖
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴𝑖 𝐹𝑖

𝑇𝐹𝑖𝐴𝑖 − 𝐹𝑖
𝑇𝐹𝑓 𝐹

2

 𝐴𝑖
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴𝑖 𝐴𝑖 − 𝐹𝑖

𝑇𝐹𝑓 𝐹

2

 𝐴𝑖
∗ = 𝐹𝑖

𝑇𝐹𝑓

 ℎ subspaces        (ℎ − 1) number of 

alignment matrices

 Size of ADPR descriptor with six 
subspaces: 128 × 6 = 768

Size of DPFD descriptor with six subspaces: 
24768 [ICCV 2015]
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Proposed Framework: Projection into the intermediate subspaces

Project training 
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Generate intermediate 
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Proposed Framework: Making the features discriminative
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M

(Images are taken from Multi-PIE dataset [R. Gross et al. 2007])



Proposed Framework: Making the features discriminative

 Mahalanobis metric: 𝑑2 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 − 𝑥𝑗
𝑇
𝑀 𝑥𝑖 − 𝑥𝑗

 Decision on matched or non-matched pairs depending upon likelihood ratio test

 H0 : Hypothesis that the pair is non-matched, H1 : Hypothesis that the pair is 
matched

𝛿 𝑥𝑖 , 𝑥𝑗 = 𝑙𝑜𝑔
𝑝 𝑥𝑖 , 𝑥𝑗|𝐻0

𝑝 𝑥𝑖 , 𝑥𝑗|𝐻1
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Matched Pairs Non-matched Pairs



Proposed Framework: Making the features discriminative

 Probabilities in difference space

𝑝 𝑥𝑖 , 𝑥𝑗|𝐻0 =
1

2𝜋 Σ𝑛𝑖𝑗=0

𝑒
−
1
2𝑥𝑖𝑗

𝑇Σ𝑛𝑖𝑗=0
−1 𝑥𝑖𝑗
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Σ𝑛𝑖𝑗=1 = 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

Σ𝑛𝑖𝑗=0 = 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑛𝑜𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

𝑥𝑖𝑗 = 𝑥𝑖 - 𝑥𝑗 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑝𝑎𝑐𝑒

𝑝 𝑥𝑖 , 𝑥𝑗|𝐻1 =
1

2𝜋 Σ𝑛𝑖𝑗=1

𝑒
−
1
2𝑥𝑖𝑗

𝑇Σ𝑛𝑖𝑗=1
−1 𝑥𝑖𝑗



Proposed Framework: Making the features discriminative

 After putting the probabilities and simplification

 Analysing

𝛿 𝑥𝑖𝑗 = log

1

2𝜋 Σ𝑛𝑖𝑗=0

𝑒
−
1
2𝑥𝑖𝑗

𝑇Σ𝑛𝑖𝑗=0
−1 𝑥𝑖𝑗

1

2𝜋 Σ𝑛𝑖𝑗=1

𝑒
−
1
2𝑥𝑖𝑗

𝑇Σ𝑛𝑖𝑗=1
−1 𝑥𝑖𝑗

M = Σ𝑛𝑖𝑗=1
−1 − Σ𝑛𝑖𝑗=0

−1
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𝛿 𝑥𝑖𝑗 = 𝑥𝑖𝑗
𝑇 Σ𝑛𝑖𝑗=1

−1 − Σ𝑛𝑖𝑗=0
−1 𝑥𝑖𝑗



Proposed Framework: Computation for ADPR
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Experimental Analysis:

 MultiPIE Dataset [R. Gross et al. 2007]: 200 subjects in 5 poses and 20
illumination conditions

 SC Face Dataset [M. Grgic et al. 2011]: 130 subjects captured in real surveillance
cameras in 5 different poses

 Coil-20 Dataset [S.A. Nene et al. 1996]: 20 subjects in multiple views

 RGB-D Dataset [K. Lai et al. 2011]: 51 subjects in multiple views
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Experiments on Face Recognition Across Pose and Resolution

Rank-1 recognition performance (%) for four different probe poses, averaged over the different gallery 
illuminations on the Multi-PIE dataset [R. Gross et al. 2007]

Method Pose 13_0 Pose 14_0 Pose 05_0 Pose 04_1

MDS Learning [S. Biswas et 

al. TPAMI 2013]

32.8 44.8 47.0 48.5

LSML [M. Kostinger et al. CVPR 2012] 46.9 53.9 55.2 54.3

GMA [A. Sharma et al. ICCV 2012] 65.0 70.1 70.3 64.2

MvDA [M. Kan et al PAMI 2016] 45.7 55.0 53.8 42.9

FCPRF + LSML [F. Shen et al. 

PR 2016]

54.0 71.2 73.4 61.0

SCDL [S. Wang et al. CVPR 2012] 66.3 73.0 72.7 64.1

SCDL + LSML 69.1 75.1 74 67.6

CFDL [D.A. Huang et al. ICCV 2013] 65.9 72.0 72.8 64.7

CFDL + LSML 68.9 74.1 74.6 68.1

DPFD [ICCV 2015] 74.5 78.0 74.0 70.1

Proposed (ADPR) 75.3 78.0 76.1 72.0
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Experiments on Real Surveillance Quality Data

Method Rank 1

1 CAM

Rank 1

5 CAM

MDS Learning [S. Biswas et al. TPAMI 2013] 30.0 61.1

LSML [M. Kostinger et al. CVPR 2012] 64.7 67.2

GMA [A. Sharma et al. ICCV 2012] 38.2 50.5

FCPRF + LSML [F. Shen et al. PR 2016] 58.0 61.3

SCDL [S. Wang et al. CVPR 2012] 48.2 58.5

SCDL + LSML 48.8 60.0

CFDL [D.A. Huang et al. ICCV 2013] 45.7 62.2

CFDL + LSML 46.3 63.3

DPFD [ICCV 2015] 69.0 -

Proposed (ADPR) 73.3 -

Rank-1 accuracy (%) of the proposed approach and comparison with state-of-the-art 
approaches on the SC face database [M. Grgic et al. 2011]. 

Sample faces of Surveillance Cameras (SC) 
Face Database [M. Grgic et al. 2011].
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Experiments on Object Recognition Across Pose

Method Rank-1 Accuracy

MDS Learning
[S. Biswas et al. TPAMI 2013]

75.6

LSML
[M. Kostinger et al. CVPR 2012]

80.3

GMA
[A. Sharma et al. ICCV 2012]

66.1

MvDA
[M. Kan et al PAMI 2016]

69.7

SCDL
[S. Wang et al. CVPR 2012]

79.2

SCDL + LSML 82.6

CFDL
[D.A. Huang et al. ICCV 2013]

78.7

CFDL + LSML 82.0

DPFD [ICCV 2015] 82.2

Proposed (ADPR) 83.0

Rank-1 accuracy (%) of the proposed approach and comparison with 
other approaches on COIL 20 Database [S.A. Nene et al. 1996] 

Sample Objects of COIL 20 database [S.A. Nene et al. 
1996]
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Experiments on RGB-D Data

Method Visual-Visual Depth-Depth

MDS Learning [S. Biswas et al. TPAMI 2013] 82.2 53.9

LSML [M. Kostinger et al. CVPR 2012] 60.1 45.8

GMA [A. Sharma et al. ICCV 2012] 70.6 38.9

MvDA [M. Kan et al PAMI 2016] 77.2 50.6

SCDL [S. Wang et al. CVPR 2012] 80.4 61.1

SCDL + LSML 81.7 62.0

CFDL [D.A. Huang et al. ICCV 2013] 81.0 60.5

CFDL + LSML 82.0 61.3

DPFD [ICCV 2015] 86.0 62.0

Proposed (ADPR) 91.4 69.2

Rank-1 accuracy (%) of the proposed approach and comparison with state-of-the-art 
approaches on the RGB-D database [K. Lai et al. 2011]. 

Sample RGB and Depth Objects of RGB-D 
Database [K. Lai et al. 2011].
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Comparison with VGG [O. M. Parkhi et al. 2015] and AlexNet [A. Krizhevsky et al. 2012] using their fc6 layer as low 
level features.
Experiments done on Multi-PIE dataset [R. Gross et al. 2007] and RGB-D dataset [K. Lai et al. 2011].

Comparison with deep architectures
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Method

[Face Recognition]

Pose 13_0 Pose 14_0 Pose 05_0 Pose 04_1

VGG-HR-LR-NN 32.2 52.8 53.1 32.8

VGG-HR-LR-ADPR 39.6 54.6 55.3 39.2

VGG-HR-HR-NN 88.3 97.0 97.0 91.3

VGG-HR-HR-ADPR 91.9 98.0 98.0 93.9

Method 

[Object Recognition]

Visual-Visual

AlexNet-NN 90.2

AlexNet-ADPR 93.4



Plot of Size of the descriptors vs. Number of Subspaces.
Experiments done on SC Face Database [M. Grgic et al. 2011].

Analysis: Descriptor Size vs. Number of Subspaces
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Plot of Distance computation Time vs. Number of Subspaces.
Experiments done on SC Face Database [M. Grgic et al. 2011].

Analysis: Distance Computation Time vs. Number of Subspaces
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Conclusion:

 Novel discriminative pose-free descriptors (DPF) for matching objects across
different poses.

 The approaches does not require separate training for different probe
poses/viewpoints. This is an advantage over many other approaches which work
well when separate training is performed for different poses encountered during
testing.

 Very few poses (as little as two/three) are required during the training phase and
the method can generalize to unseen poses.
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