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» Person re-id is the task of matching specific person across

non-overlapping camera views.




Person re-id Overview .=

Person re-id remains a challenging problem due to a variety of
factors:

€ 1 . Viewpoint Variation
@ 2 Illumination Change
€ 3.0Occlusion

€ 4. Pose Variation

@ 5.Similar Dressing Style
€ 6.Low Resolution
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Person re-id Overview

Most of researchers for addressing this challenge mainly focus on
following aspects:

Feature representation
Distance metric learning
Deep learning
Dictionary learning
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Person re-id Overview ——

This paper focus on learning discriminative and robust coupled dictionary ,
aiming to address the cross-view problem of person re-id.

Contributions:

* We propose a coupled analysis-
synthesis dictionary learning model.

« To improve the representation ability
of the coupled synthesis dictionary,
we construct an associate function
with coupled analysis dictionary.
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Proposed Method

e System Overview

1

|
[}
1

i Goupled analysis Coupled synthesisi

dictionary

o dictionary

'
Coupled feature space

M, =W, P, X, DB

.................................................................

: local Fisher discriminant analysis
: analysis dictionary

: synthesis dictionary

: training data
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___________ Proposed Method m

* Coupled Analysis-Synthesis Dictionary Learning

The coupled analysis-synthesis dictionary learning on the common
feature space can be formulated under the following framework:

min HXA _DAPAXAHj? +HXB _DBPBXBH; +\P(PA’PB)
D,,Dg,P,, P Eq 1
st |d,,|, <L|ds,|<1vi

Where d,,andd,, :i-th atoms of D, and D, .
¥(P,,P,) : associate function.

The coding coefficient matrix can be analytically obtained as:

ZA:PAXA ZB:PBXB

XA :DAZA XB :DBZB
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Proposed Method -

Original coupled dictionary learning assumption:

There exists a latent coupled feature space where the coding
coefficients of the same object should be strictly equal.

However, this assumption is too strong to handle various changes
of image structures from different views.
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pp Proposed Method . e

In this paper, we relax this assumption. We introduced a mapping transform
W,and W, , and consider the following minimization problem:

min|[M , - M, | = min |7, Z, -W,Z,|.

_ ) Eq.2
= min|W,P, X, -W,P,X |
To avoid the trivial solution and be more precise, we can derive as:
for a same person m1:
Camera A
m, = WAPAx;% PAxZ=W;mA ? PAxil=W;mB
Eq.3
m,=my
Camera B
my =Wy Py, —> })ijiB:WI;lmB $ PBx;:W;mA
Finally, the associate function:
B 2 B 2
V(P B)=|PX, - M, +|| X, WM | Eq.4
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Proposed Method

The objective function of coupled analysis-synthesis dictionary learning
1s formulated below:

min XD LXK = DBX A (X - |mx - )

A (A AN st [y ], <1

d, | <1, Vi
Eq.5
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* Matching

" Proposed Method

A T ®

Given the gallery set from camera A4 and the probe set from cameraB , the

representation coefficients of the J-th gallery image P4, and the k -th

probe image P« are computed with the learned coupled synthesis dictionary as

follows:
a, ; =argmin

aA,j

Q,, =argmin

ap k

P~ D,

Ppir— DBaB,k

2

F

2

F

+ 4

+ i

OCA’J.

Ap i

The cosine similarity is employed to compute similarity score between the

representation coefficients.
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........... Experiments & Results m

Evaluating the proposed method on VIPeR and CUHKO01datasets.

Cumulative Matching Characteristic(CMC) curves are used to evaluate the
performance of the proposed method.

Local Maximal Occurrence (LOMO) feature 1s used to our paper.
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Matching Rate(%)
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Matching Rate(%)
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» Experiments & Results R
............................................................................................ .
Table 1: Top ranked matching rate in (%) on VIPeR
VIPeR(p=316)
o =1 [ 1=5 | =10 | =20
KISSME 19.60 | 48.00 | 62.20 | 77.00
SDALF 19.87 | 38.89 | 49.37 | 65.73
SalMatch 30.16 | 52.31 | 65.54 | 79.15
QAF 30.89 | 51.95 | 62.96 | 75.05
ImprovedDeep | 34.81 | 63.61 | 75.63 | 84.49
CPDL 39.56 | 65.51 | 76.90 | 88.61
XQDA+LOMO | 40.00 | 68.13 | 80.51 | 91.08
Ours 40.73 | 69.37 | 82.56 | 92.25

Table 2: Top ranked matching rate in (%) on CUHKO1
CUHKO1(p=486)

Ieratm =1 | =5 | =10 | =20
SDALF 0.00 | 22.57 | 30.33 | 41.03
eSDC 19.67 | 32.72 | 40.29 | 50.58

SalMatch | 28.45 | 45.85 | 55.68 | 67.95
Midlevel | 34.30 | 55.06 | 64.96 | 74.04
XODA+LOMO | 39.71 | 64.36 | 73.42 | 81.83
Outs 4047 | 65.72 | 75.06 | 83.95 23
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Experiments & Results

Conclusion

— We propose a coupled analysis-synthesis dictionary learning method.
— An efficient iterative algorithm is developed for solving the
optimization.

— Experimental results on two public person re-identification datasets
demonstrate the effectiveness of the proposed method.
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