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The general form for an ADMM problem is

argmin f(x) + g(y) suchthat Ax+ By =c¢
Xy

ADMM iterations:

2
x5+ = argmin f(x) + g HAx + By — ¢+ u(k)H2
X

2
y 1) = argmin g(y) + g HAx("“) +By—c+ u(")H2
y

u(k‘H) — u(k) + Ax(k+1) + By(k+1) —-C

Convergence is guaranteed under relatively mild conditions.
In practice ADMM works well for a wide range of problems.
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ADMM Penalty Parameter |

o But the convergence rate of the algorithm depends strongly on
the penalty parameter p.

e A variety of penalty parameter selection methods have been
proposed

e Theoretically optimal parameters derived for a restricted class of
problems, e.g. Raghunathan et al. (2014), Ghadimi et al. (2015)

e Heuristic methods that do not provide good performance in all
contexts, e.g. He et al. (2000), Wohlberg (2017), Xu et al. (2017)

e Theory based methods that are broadly applicable but complex or
expensive to implement, e.g. Nishihara et al. (2015)
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ADMM Penalty Parameter Il

e Proposed approach:

e Applicable to problems in which the main linear system is solved via
iterative methods

e The selection principle itself is simple: solve the linear system for a
number of different p values, selecting the value that delivers the
smallest value of functional to be minimized

e The additional solutions of the linear system can be computed at
very small additional cost by exploiting Krylov subspace methods
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Imaging Inverse Problems

o We are interested in addressing problems of the form
argmin (1/2) | Fx — s||2 + R(x)
X

where F is the forward operator and R is the regularization term.

e Such problems can be solved within the ADMM framework via
variable splitting

argmin (1/2) ||Fx — ng +R(ly) st x=y
x7y
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ADMM Solution

e The ADMM iterations for this problem are:
2
XD — argmin (1/2) [ Fx — | + & [x —y®@ +u®|” (1)
X
2
ykt) — argmin A(y) + g Hx(kﬂ) Y u(k)Hz @
utD) = ) x(kt) gk ©

¢ One of the advantages of ADMM is the decoupling of the data
fidelity and regularization terms:

e The solution to (2) depends on the form of R(-).

e Solving (1) requires solving the linear system

(FTF+phx = FTs+p(y" —u®) =
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Solving the Linear System

e The major computational cost of an ADMM algorithm is often in
solving this linear system (repeated here)

(FTF+ phx = FTs + p(y® — u)y

e When F is an explicit matrix, an LU or Cholesky pre-factorization
of FTF + pl can be used for an efficient solution via direct
methods.

e For many inverse problems (e.g. tomography), F is represented
as a transform operator: we need to use iterative methods (e.g.
CG, LSQR) to solve this linear system.

e The LSQR algorithm has some very useful properties for this
problem.
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e LSQR is an iterative linear solver with good performance on
large-scale ill-posed problems.

¢ |t belongs to the family for Krylov subspace techniques.

e For least squares problem with A € RV*N

argmin (1/2) || Ax — b||3
X

the order-n Krylov subspace is
ICn(A; b) = span{b, Ab’ A(z)b7 . ,A(n—‘])b}

o If Ac RN*M the Krylov subspace is generated for the normal
equations ATAx = A’b

Kn(ATA,ATb) = span{A"b, AT Ab, (AT A)@b, ..., (AT A)("~ 1}
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e LSQR is based on the Golub-Kahan-Lanczos (GKL)
bidiagonalization technique: a computationally efficient iterative
algorithm for constructing an orthogonal basis for the Krylov
subspace.

e The major computational cost is in the computation of a pair of
orthogonal bases U**+") and V(%)

¢ Given the bases, solving the problem via the bidiagonal
decomposition is very cheap

o) -
8@ 2
(UK T Ay (R — 5G)

k)
ﬂ(k+1)
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Linear Problem Transformation

¢ Returning to the ADMM subproblem, we need to solve
(k+1) in 11 2 Pllx — (y®) — uky|
X = argmin E||Fx—sH2 H (y )H2
X

¢ Need to transform into a least squares problem so that we can
apply LSQR

e Standard form transformation

gives
%K1 —  arg min {1HF)”( — 85+ pl!ill'é}
X 2 2
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Equivalent Least Squares Form

Using
2

I3+ yliz = [ <™ y7 )|

the standard form
< (k+1) N N S e
X = argmin EHFX—SH2+5”XH2
%
can be written in the equivalent least squares form

o 1o

2
%) = argmin
%

2

Normal equations are
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Krylov Subspace Invariance |

e Krylov subspace at the n™ step of the GKL method

Kn{FTF +pl, FT §}
= span{F &, (FTF+p)FT8,(FTF+ph?F's, ...}
= span{F" 8 FTFFT 8§+ pF" 8§ (FTF)?FT8§+2p)F"FFT§
+p?FT8,.. )
= span{F'§, FTFFT“ (FTF)?F'S,...} = Ko{FTF,FT 8}
e The Krylov subspaces for
(FTF+ph%x=F'§

and

are the same.

Y. Lin, B. Wohlberg, V. Vesselinov (LANL) ADMM Penalty Parameter Selection



Krylov Subspace Invariance Il

e It can also be shown that the bases generated by the GKL method
are the same for problems

FTFx=FT§ (4)
and
(FTF+ph%k=F'§ (5)

e Subspace Recycling: We can compute the Krylov subspace for
problem (4) and then use it to cheaply compute the solution to
problem (5) with multiple p values
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Robust ADMM Penalty Parameter Selection

Generate N logarithmically spaced ADMM penalty parameters
between 102 and 10°: p1, ..., pn

Compute the GKL bases for FT Fx = F'§ (seed system)

Use the GKL bases to efficiently solve (FTF + p,)Xx = F'§
vne {1,2,..., N} (non-seed systems)

Select the p, value that minimizes the problem functional

poptimal = @rgmin  (1/2) |[Fx(p) — s[5 + R(X(p))
pe{p1 1P2500+5 pN}

Use the corresponding X(poptimal) Value as the solution of the
ADMM x step, and proceed to compute the ADMM y and u steps
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Test Problem: Sparse Coding

Consider sparse coding via Basis Pursuit DeNoising (BPDN)

arg min {(1/2)][Dx — sllz + Aflxl+}

with dictionary D.

This problem fits within our general framework with

F=D R(x) = AlIx]|

Address a Gaussian white noise image denoising problem.

Use the 2x overcomplete Discrete Cosine Transform (DCT) basis
as the dictionary.

Y. Lin, B. Wohlberg, V. Vesselinov (LANL) ADMM Penalty Parameter Selection



Linear Solver Efficiency |
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o Computation time cost in solving the inverse step using N = 10
penalty parameters for our method.

¢ Solving each non-seed system is about an order of magnitude
faster than solving the seed system.
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Linear Solver Efficiency Il
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e The overall computation time at each iteration using BPDN with
CG solver (in red) and BPDN with our subspace recycling
technique (in blue).

e Our method is consistently more efficient than BPDN-CG method.
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Parameter Selection Efficacy
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ADMM Penalty Parameter

e Solve multiple times with different initial penalty parameters
pinit € {0.05, 0.08, 0.1,0.2,0.3, 1.0, 3.0, 10.0, 20.0 and 30.0}
¢ Our method yields objective function value consistently close to

the optimal value regardless of piyi
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Conclusions and Future Work

e We have developed a computationally efficient ADMM penalty
parameter selection technique using Krylov subspace recycling.

e Initial experiments in using a sparse coding problem for image
denoising indicate that it is very effective in selecting close to
optimal penalty parameters.

e Future work:

e Test the method on a wider range of image reconstructions
problems.

e Compare with alternative parameter selection techniques.
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