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Machine Learning
According to Wikipedia (attributed to Arthur Samuel 1959), ”Machine
Learning [...] gives computers the ability to learn without being explicitly
programmed.”
While it has been first coined in 1959, today’s machine learning, as a field,
evolved from and overlaps with a number of other fields: computational
statistics, mathematical optimizations, theory of linear and nonlinear
systems.

Types of problems (tasks) in machine learning:
1 Supervised Learning: The machine (computer) is given pairs of inputs

and desired outputs and is left to learn the general association rule.
2 Unsupervised Learning: The machine is given only input data, and is

left to discover structures (patterns) in data.
3 Reinforcement Learning: The machine operates in a dynamic

environment and had to adapt (learn) continuously as it navigates the
problem space (e.g. autonomous vehicle).

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 1: The AlexNet
The ImageNet Dataset

Dataset: ImageNet dataset [DDSLLF09]. Currently (2017): 14.2
mil.images; 21841 categories; image-net.org
Task: Classify an input image, i.e. place it into one category.

Figure: The ”ostrich” category ”Struthio Camelus” 1393 pictures. From
image-net.org

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 1: The AlexNet
The Supervised Machine Learning

The AlexNet is 8 layer network, 5 convolutive layers plus 3 dense layers.
Introduced by (Alex) Krizhevsky, Sutskever and Hinton in 2012 [KSH12].
Trained on a subset of the ImageNet: Part of the ImageNet Large Scale
Visual Recognition Challenge 2010-2012: 1000 object classes and
1,431,167 images.

Figure: From Krizhevsky et all 2012 [KSH12]: AlexNet: 5 convolutive layers + 3
dense layers. Input size: 224x224x3 pixels. Output size: 1000.

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 1: The AlexNet
Adversarial Perturbations

The authors of [SZSBEGF13] (Szegedy, Zaremba, Sutskever, Bruna,
Erhan, Goodfellow, Fergus, ’Intriguing properties ...’) found small
variations of the input, almost imperceptible, that produced completely
different classification decisions:

Figure: From Szegedy et all 2013 [SZSBEGF13]: AlexNet: 6 different classes:
original image, difference, and adversarial example – all classified as ’ostrich’

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 1: The AlexNet
Lipschitz Analysis

Szegedy et all 2013 [SZSBEGF13] computed the Lipschitz constants of
each layer.

Layer Size Sing.Val
Conv. 1 3× 11× 11× 96 20
Conv. 2 96× 5× 5× 256 10
Conv. 3 256× 3× 3× 384 7
Conv. 4 384× 3× 3× 384 7.3
Conv. 5 384× 3× 3× 256 11

Fully Conn.1 9216(43264)× 4096 3.12
Fully Conn.2 4096× 4096 4
Fully Conn.3 4096× 1000 4

Overall Lipschitz constant:

Lip ≤ 20 ∗ 10 ∗ 7 ∗ 7.3 ∗ 11 ∗ 3.12 ∗ 4 ∗ 4 = 5, 612, 006
Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 2: Generative Adversarial Networks
The GAN Problem

Two systems are involved: a generator network producing synthetic data; a
discriminator network that has to decide if its input is synthetic data or
real-world (true) data:

Introduced by Goodfellow et al
[GPMXWOCB14] in 2014, GANs
solve a minimax optimization prob-
lem:

min
G

max
D

Ex∼Pr [log(D(x))] + Ex̃∼Pg [log(1− D(x̃))]

where Pr is the distribution of true data, Pg is the generator distribution,
and D : x 7→ D(x) ∈ [0, 1] is the discriminator map (1 for likely true data;
0 for likely synthetic data).

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 2: Generative Adversarial Networks
The Wasserstein Optimization Problem

In practice, the training algorithms do not behave well (”saddle point
effect”).
The Wasserstein GAN (Arjovsky et al [ACB17]) replaces the
Jensen-Shannon divergence by the Wasserstein-1 distance:

min
G

max
D∈Lip(1)

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)]

where Lip(1) denotes the set of Lipschitz functions with constant 1,
enforced by weight clipping.

Gulrajani et al in [GAADC17] propose to incorporate the Lip(1) condition
into the optimization criterion using a soft Lagrange multiplier technique
for minimization of:

L = Ex̃∼Pg [D(x)]− Ex∼Pr [D(x)] + λEx̂∼Px̂

[
‖∇x̂ D(x̂)‖2 − 1)2

]
where x̂ is sampled uniformly between x ∼ Pr and x̃ ∼ Pg .

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 3: The Scattering Network
Topology

Example of Scattering Network; definition and properties: [Mallat12]; this
example from [BSZ17]:

Input: f ; Outputs: y = (yl ,k).
Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 3: Scattering Network
Lipschitz Analysis

Remarks:
Outputs from each layer

Tree-like topology
Backpropagation/Chain rule:
Lipschitz bound 40.
Mallat’s result predicts Lip = 1.

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Problem Formulation
Nonlinear Maps

Consider a nonlinear function between two metric spaces,

F : (X , dX )→ (Y , dY ).

Radu Balan (UMD) Machine Learning and Harmonic Analysis



Three Examples Problem Formulation Deep Convolutional Neural Networks Lipschitz Analysis Numerical Results

Problem Formulation
Lipschitz analysis of nonlinear systems

F : (X , dX )→ (Y , dY )

F is called Lipschitz with constant C if for any f , f̃ ∈ X ,

dY (F(f ),F(f̃ )) ≤ C dX (f , f̃ )

The optimal (i.e. smallest) Lipschitz constant is denoted Lip(F). The
square C2 is called Lipschitz bound (similar to the Bessel bound).

F is called bi-Lipschitz with constants C1,C2 > 0 if for any f , f̃ ∈ X ,

C1 dX (f , f̃ ) ≤ dY (F(f ),F(f̃ )) ≤ C2 dX (f , f̃ )

The square C2
1 ,C2

2 are called Lipschitz bounds (similar to frame bounds).

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Problem Formulation
Motivating Examples

Consider the typical neural network as a feature extractor component in a
classification system:

g = F(f ) = FM(...F1(f ; W1, ϕ1); ...; WM , ϕM)
Fm(f ; Wm, ϕm) = ϕm(Wmf )

Wm is a linear operator (matrix); ϕm is a Lip(1) scalar nonlinearity (e.g.
Rectified Linear Unit).

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Problem Formulation
Problem 1

Given a deep network:

Estimate the Lipschitz constant, or bound:

Lip = sup
f 6=f̃ ∈L2

‖y − ỹ‖2
‖f − f̃ ‖2

, Bound = sup
f 6=f̃ ∈L2

‖y − ỹ‖22
‖f − f̃ ‖22

.

Methods (Approaches):
1 Standard Method: Backpropagation, or chain-rule
2 New Method: Storage function based approach (dissipative systems)
3 Numerical Method: Simulations

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Problem Formulation
Problem 2

Given a deep network:

Estimate the stability of the output to specific variations of the input:
1 Invariance to deformations: f̃ (x) = f (x − τ(x)), for some smooth τ .
2 Covariance to such deformations f̃ (x) = f (x − τ(x)), for smooth τ

and bandlimited signals f ;
3 Tail bounds when f has a known statistical distribution (e.g. normal

with known spectral power)

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet
Topology

A deep convolution network is composed of multiple layers:

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet
One Layer

Each layer is composed of two or three sublayers: convolution,
downsampling, detection/pooling/merge.

Radu Balan (UMD) Machine Learning and Harmonic Analysis



Three Examples Problem Formulation Deep Convolutional Neural Networks Lipschitz Analysis Numerical Results

ConvNet: Sublayers
Linear Filters: Convolution and Pooling-to-Output Sublayer

f (2) = g ∗ f (1) , f (2)(x) =
∫

g(x − ξ)f (1)(ξ)dξ

where g ∈ B = {g ∈ S ′ , ĝ ∈ L∞(Rd )}.

(B, ∗) is a Banach algebra with norm ‖g‖B = ‖ĝ‖∞.
Notation: g for regular convolution filters, and Φ for pooling-to-output
filters.

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet: Sublayers
Downsampling Sublayer

f (2)(x) = f (1)(Dx)

For f (1) ∈ L2(Rd ) and D = D0 · I, f (2) ∈ L2(Rd ) and

‖f (2)‖22 =
∫
Rd
|f (2)(x)|2dx = 1

|det(D)|

∫
Rd
|f (1)(x)|2dx = 1

Dd
0
‖f (1)‖22

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet: Sublayers
Detection and Pooling Sublayer

We consider three types of detection/pooling/merge sublayers:
Type I, τ1: Componentwise Addition: z =

∑k
j=1 σj(yj)

Type II, τ2: p-norm aggregation: z =
(∑k

j=1 |σj(yj)|p
)1/p

Type III, τ3: Componentwise Multiplication: z =
∏k

j=1 σj(yj)

Assumptions: (1) σj are scalar Lipschitz functions with Lip(σj) ≤ 1; (2) If
σj is connected to a multiplication block then ‖σj‖∞ ≤ 1.

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet: Sublayers
MaxPooling and AveragePooling

MaxPooling can be implemented as follows:

AveragePooling can be implemented as follows:

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet: Sublayers
MaxPooling and AveragePooling

MaxPooling can be implemented as follows:

AveragePooling can be implemented as follows:
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ConvNet: Sublayers
Long Short-Term Memory

Long Short-Term Memory (LSTM) networks [HS97, GSKSS15].
By BiObserver - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=43992484

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet: Layer m
Components of the mth layer

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet: Layer m
Topology coding of the mth layer

nm denotes the number of input nodes in the m-th layer:
Im = {Nm,1,Nm,2, · · · ,Nm,nm}.
Filters:

1 pooling filter: φm,n for node n, in layer m;
2 convolution filter: gm,n,k for input node n to output node k, in layer

m;
For node n: Gm,n = {gm,n;1, · · · gm,n;km,n}.
The set of all convolution filters in layer m: Gm = ∪nm

n=1Gm,n.

Om = {N ′m,1,N ′m,2, · · · ,N ′m,n′m} the set of output nodes of the m-th layer.
Note that n′m = nm+1 and there is a one-one correspondence between Om
and Im+1.
The output nodes automatically partitions Gm into n′m disjoint subsets
Gm = ∪n′m

n′=1G ′m,n′ , where G ′m,n′ is the set of filters merged into N ′m,n′ .

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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ConvNet: Layer m
Topology coding of the mth layer

For each filter gm,n;k , we define an associated multiplier lm,n;k in the
following way: suppose gm,n;k ∈ G ′m,k , let K =

∣∣∣G ′m,k ∣∣∣ denote the
cardinality of G ′m,k . Then

lm,n;k =
{

K , if gm,n;k ∈ τ1 ∪ τ3

K max{0,2/p−1} , if gm,n;k ∈ τ2
(3.1)

Radu Balan (UMD) Machine Learning and Harmonic Analysis



Three Examples Problem Formulation Deep Convolutional Neural Networks Lipschitz Analysis Numerical Results

ConvNet: Layer m
Topology coding of the mth layer

Radu Balan (UMD) Machine Learning and Harmonic Analysis



Three Examples Problem Formulation Deep Convolutional Neural Networks Lipschitz Analysis Numerical Results

ConvNet: Layer m
Topology coding of the mth layer

Radu Balan (UMD) Machine Learning and Harmonic Analysis



Three Examples Problem Formulation Deep Convolutional Neural Networks Lipschitz Analysis Numerical Results

ConvNet: Layer m
Topology coding of the mth layer

Radu Balan (UMD) Machine Learning and Harmonic Analysis



Three Examples Problem Formulation Deep Convolutional Neural Networks Lipschitz Analysis Numerical Results

Layer Analysis
Bessel Bounds

In each layer m and for each input node n we define three types of Bessel
bounds:

1st type Bessel bound:

B(1)
m,n = ‖

∣∣∣φ̂m,n
∣∣∣2 +

∑
gm,n;k∈Gm,n

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖

∞

(4.2)

2nd type Bessel bound:

B(2)
m,n = ‖

∑
gm,n;k∈Gm,n

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖

∞

(4.3)

3rd type (or generating) bound:

B(3)
m,n = ‖φ̂m,n‖

2
∞ . (4.4)

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Layer Analysis
Bessel Bounds

Next we define the layer m Bessel bounds:

1st type Bessel bound B(1)
m = max

1≤n≤nm
B(1)

m,n (4.5)

2nd type Bessel bound B(2)
m = max

1≤n≤nm
B(2)

m,n (4.6)

3rd type (generating) Bessel bound B(3)
m = max

1≤n≤nm
B(3)

m,n. (4.7)

Remark. These bounds characterize semi-discrete Bessel systems.

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Lipschitz Analysis
First Result

Theorem
[BSZ17] Consider a Convolutional Neural Network with M layers as
described before, where all scalar nonlinear functions are Lipschitz with
Lip(ϕm,n,n′) ≤ 1. Additionally, those ϕm,n,n′ that aggregate into a
multiplicative block satisfy ‖ϕm,n,n′‖∞ ≤ 1. Let the m-th layer 1st type
Bessel bound be

B(1)
m = max

1≤n≤nm
‖
∣∣∣φ̂m,n

∣∣∣2 +
km,n∑
k=1

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖

∞

.

Then the Lipschitz bound of the entire CNN is upper bounded by∏M
m=1 max(1,B(1)

m ). Specifically, for any f , f̃ ∈ L2(Rd ):

‖F(f )−F(f̃ )‖22 ≤
( M∏

m=1
max(1,B(1)

m )
)
‖f − f̃ ‖22,

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Lipschitz Analysis
Second Result

Theorem
Consider a Convolutional Neural Network with M layers as described
before, where all scalar nonlinearities satisfy the same conditions as in the
previous result. For layer m, let B(1)

m , B(2)
m , and B(3)

m denote the three
Bessel bounds defined earlier. Denote by L the optimal solution of the
following linear program:

Γ = max
y1,...,yM ,z1,...,zM≥0

M∑
m=1

zm

s.t. y0 = 1
ym + zm ≤ B(1)

m ym−1, 1 ≤ m ≤ M
ym ≤ B(2)

m ym−1, 1 ≤ m ≤ M
zm ≤ B(3)

m ym−1, 1 ≤ m ≤ M

(4.8)

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Lipschitz Analysis
Second Result - cont’d

Theorem
Then the Lipschitz bound satisfies Lip(F)2 ≤ Γ. Specifically, for any
f , f̃ ∈ L2(Rd ):

‖F(f )−F(f̃ )‖22 ≤ Γ‖f − f̃ ‖22,

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 1: Scattering Network

The Lipschitz constant:
Backpropagation/Chain rule:
Lipschitz bound 40 (hence
Lip ≤ 6.3).

Using our main theorem,
Lip ≤ 1, but Mallat’s result:
Lip = 1.

Filters have been choosen as in a
dyadic wavelet decomposition. Thus
B(1)

m = B(2)
m = B(3)

m = 1, 1 ≤ m ≤ 4.

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 2: A General Convolutive Neural Network

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 2: A General Convolutive Neural Network
Set p = 2 and:

F (ω) = exp(
4ω2 + 4ω + 1

4ω2 + 4ω
)χ(−1,−1/2)(ω) + χ(−1/2,1/2)(ω) + exp(

4ω2 − 4ω + 1
4ω2 − 4ω

)χ(1/2,1)(ω).

φ̂1(ω) = F (ω)
ĝ1,j (ω) = F (ω + 2j − 1/2) + F (ω − 2j + 1/2) , j = 1, 2, 3, 4

φ̂2(ω) = exp(
4ω2 + 12ω + 9
4ω2 + 12ω + 8

)χ(−2,−3/2)(ω) +

χ(−3/2,3/2)(ω) + exp(
4ω2 − 12ω + 9
4ω2 − 12ω + 8

)χ(3/2,2)(ω)

ĝ2,j (ω) = F (ω + 2j) + F (ω − 2j) , j = 1, 2, 3
ĝ2,4(ω) = F (ω + 2) + F (ω − 2)
ĝ2,5(ω) = F (ω + 5) + F (ω − 5)

φ̂3(ω) = exp(
4ω2 + 20ω + 25
4ω2 + 20ω + 24

)χ(−3,−5/2)(ω) +

χ(−5/2,5/2)(ω) + exp(
4ω2 − 20ω + 25
4ω2 − 20ω + 25

)χ(5/2,3)(ω).

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 2: A General Convolutive Neural Network

Bessel Bounds: B(1)
m = 2e−1/3 =

1.43, B(2)
m = B(3)

m = 1.
The Lipschitz bound:

Using
backpropagation/chain-rule:
Lip2 ≤ 5.
Using Theorem 1:
Lip2 ≤ 2.9430.
Using Theorem 2 (linear
program): Lip2 ≤ 2.2992.

Radu Balan (UMD) Machine Learning and Harmonic Analysis
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Example 3: Lipschitz constant as an optimization criterion
Nonlinear Discriminant Analysis

In Linear Discriminant Analysis (LDA), the objective is to maximize the
”separation” between two classes, while controlling the variances within
class.
A similar nonlinear discriminant can be defined:

S = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2

‖Cov(F(f )|f ∈ C1)‖F + ‖Cov(F(f )|f ∈ C2)‖F
.

Replace the statistics ‖Cov‖F by Lipschitz bounds:
Lipschitz bound based separation:

S̃ = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2

Lip2
1 + Lip2

2
.
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Example 3: Lipschitz constant as an optimization criterion
Nonlinear Discriminant Analysis

The Lipschitz bounds Lip2
1 , Lip2

2 are computed using Gaussian generative
models for the two classes: (µc ,WcW T

c ), where Wc represents the
whitening filter for class c ∈ {1, 2}.
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Example 3: Lipschitz constant as an optimization criterion
Numerical Results

Dataset: MNIST database; input images: 28× 28 pixels. Two classes: ”3”
and ”8”
Classifier: 3 layer and 4 layer random CNN, followed by a trained SVM.

Figure: Results for uniformly distributed random weights

Conclusion: The error rate decreases as the Lipschitz bound separation
increases. The discriminant spread is wider.
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Example 3: Lipschitz constant as an optimization criterion
Numerical Results

Dataset: MNIST database; input images: 28× 28 pixels. Two classes: ”3”
and ”8”
Classifier: 3 layer and 4 layer random CNN, followed by a trained SVM.

Figure: Results for normaly distributed random weights
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