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Backgrounds

• Learning a dependency graph from relational data is a key step in data
visualization and analysis. Examples include

1 recommendation system
2 social network analysis [Goyal et al., 2010]
3 sensor network analysis [Joshi and Boyd, 2009, Liu et al., 2016]

• However, in many situations, only a limited set of data is accessible, due
to
• the limited budgets during data collections (e.g. labor, energy)
• the restricted accessibility to data sources (e.g. data security, privacy)

• Semi-blinded subgraph topology learning problem: only see data on
a subgraph but blind to the rest.
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Semi-blinded subgraph topology learning problem
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Challenges

• Challenges:
• The influence of external latent data⇒ the target network⇒ bias in

inference

probabilistic models: marginalization⇒ false positives in edge detection

Figure: The red nodes are conditional independent given the blue node. After
marginalizing the blue node, it creates a false connection in the graph

• Assumption: additional information from external sources⇒ summary
info. of latent data
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Settings

• Random graph signal x ∈ Rn ∼ N(0,Θ−1), Markovian w.r.t. G = (V,E),
|V| = n
⇒ xi ⊥⊥ xj |x−{i,j} ⇔Θi,j = 0 iff (i, j) < E.

• Consider
• partition of V = V1 ∪ V2, non-overlapping, |V1| = n1, |V2| = n2, edge

set between V1,V2 denoted as E1,2

• accessible x1 := xV1 ∈ Rn1 , inaccessible (latent) x2 := xV2 ∈ Rn2

• precision matrix Θ :=

[
Θ1 Θ12

Θ21 Θ2

]
• G1 = (V1,E1), target network; E1 := E ∩ (V1 × V1)⇔Θ1

• Goal: estimate Θ1, given
1 accessible data on V1, x1 ⇒ Σ̂1 := Ê[x1 xT

1 ], sample marginal
covariance

2 a noisy summary Θ̂2 ∈ Rn2×n2 of inverse covariance of x2, shared
by external sources
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Network topology learning from partially shared information
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Related works

• w/o latent variables, many algorithms to estimate Θ of Gaussian
graphical model. e.g.

1 `1 regularized ML, such as gLasso, [Friedman et al., 2008]

2 quadratic approximation, QUIC, [Hsieh et al., 2011]

3 `0 regularized ML, [Marjanovic and Hero, 2015]

• w/ latent variables, to estimate sub-matrix Θ1 of full precision Θ

1 the latent variable Gaussian graphical model (LV-GGM) by [Chandrasekaran
et al., 2012]

2 Key

Θ̃1 := (Σ1)
−1

= Θ1︸︷︷︸
sparse

−Θ12 (Θ2)
−1

Θ21︸                 ︷︷                 ︸
low-rank

:= C − M ⇒ signal + confounding factor

3 Disadvantages
• the effect of latent variables is uniform and global, not change during

propagation

• does not exploit the dependency structure among latent variables
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Global influence model vs. decayed influence model

(a) Global influence by LV-GGM

• E21 dense
• no edge among nodes in V2,

i.e. x2 cond. indep given x1

(b) Decayed-influence latent variable model

• E21 sparse
• edges among nodes in V2, i.e.

cond. dep ∼ Θ̂2
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Our contributions

• Propose the decayed-influence latent variable Gaussian graphical model
(DiLat-GGM) that

1 takes into account the decayed influence effect during the
propagation of info.

2 fully utilizes the shared dependency information from external
sources

3 latent variable inference and selection
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LV-GGM vs. DiLat-GGM

LV-GGM DiLat-GGM

variables C ∈ Rn1×n1 , M ∈ Rn1×n1
C ∈ Rn1×n1

B := Θ12Θ
−1
2 ∈ Rn1×n2

known Σ̂1, α,β Σ̂1, α,β,
Θ̂2 � 0 ∈ Rn2×n2

constraint Θ̃1 = C − M � 0 Θ̃1 = C − BΘ̂2BT � 0

key M � 0, low-rank
Θ21 = Θ̂2BT =[
0

ΘδV2,1

]
, row-sparse

infer. on
latent var No

Yes. p(x2|x1) =

N(µ2|1, Θ̂2),µ2|1 = BT x1

latent feat.
sel. No Yes.

convexity Yes No

implemt. ADMM
Convex-concave

procedure (CCP) +
ADMM
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The decayed-influence latent variable Gaussian graphical model

The proposed DiLat-GGM solves the following

min
C,B

− log det
(

C − BΘ̂2BT
)
+ tr

(
Σ̂1

(
C − BΘ̂2BT

))
+ αm ‖C‖1︸      ︷︷      ︸

sparsity of cond. graph

+ βm

∥∥∥Θ̂2BT
∥∥∥

2,1︸               ︷︷               ︸
sparsity of Ecross & latent feat. sel.

s.t. C − BΘ̂2BT � 0,

where

•

∥∥∥Θ̂2BT
∥∥∥

2,1
:=

∑
i∈V2

∥∥∥[Θ̂2BT ]i

∥∥∥
2

is the mixed `21 norm.

• An external source provides Θ̂2 ⇒ partial corr. of x2

• DiLat-GGM is a Difference-of-Convex program and can be solved via
convex-concave procedure (CCP) [Yuille et al., 2002, Lipp and Boyd,
2016]
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The convex-concave procedure

• Example: find x∗ = argmin(f(x) − g(x)).

• Iteratively solve for xt := argmin(f(x) − g(xt−1) −∇g(xt−1)(x − xt−1))

• For DiLat-GGM, g(B) = tr
(
Σ̂1BΘ̂2B

)T
, the rest is f(·).
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Experiments

• Compare algorithms:
• DiLat-GGM
• GLasso [Friedman et al., 2008]
• LV-GGM [Chandrasekaran et al., 2012]
• EM-GLasso [Yuan, 2012].
• Generalized Laplacian learning (GenLap) [Pavez and Ortega, 2016]

• m i.i.d realizations of x = [x1, . . . , xn]. m = 400.

• Three types of graphs:
1 The complete binary tree (h :=height)
2 The grid (w :=width, h :=height)
3 The Erdős-Rényi (n,p)

• The Jaccard distance error [Jaccard, 1901, Choi et al., 2010] for edge
selection: between two sets A ,B as

distJ(A ,B) = 1 −
|A ∩ B |

|A ∪ B |
∈ [0,1].

1 A := non-zero support set of estimated Θ̂1

2 B := E1, the ground true edge set
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Comparison of mean edge selection error
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Comparison of Learned Network

(a) Ground truth (b) GLasso

(c) LV-GGM (d) DiLat-GGM
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Conclusion

• We propose the DiLat-GGM as a generalization of the LV-GGM

• The proposed model learns network topology given internal data and a
summary of latent factors from external source

• Efficient algorithm based on CCP is proposed

• Future research direction: large-scale network learning, hierarchical
models
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Thank you !
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DiLat-GGM as Difference-of-Convex program

min
C,B

− log det
(

C − BΘ̂2BT
)
+ tr

(
Σ̂1C

)
︸                                             ︷︷                                             ︸

f(C,B) convex

− tr
(
Σ1BΘ̂2BT

)
︸                ︷︷                ︸

g(B) convex

+regularizer

s.t. C − BΘ̂2BT � 0,

• f(C,B) = − log det

[
C B
BT Θ̂

−1
2

]
+ tr

(
Σ̂1C

)
convex

g(B) = vec
(

BT
)T (

Σ̂1 ⊗ Θ̂2

)
vec

(
BT
)

convex

• can be solved via convex-concave procedure (CCP) [Yuille et al.,
2002, Lipp and Boyd, 2016].
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The convex sub-problem

At iteration t ,

(C t+1,B t+1) = min
C,B

. . .+ tr
(
Σ̂1

(
C − 2BDT

t

))
(1)

s.t. . . .

where ∇Bg(B t) = 2Σ̂1B tΘ̂2, D t := B tΘ̂2.

• SDP problem⇒ convex

• CCP is a special form of Majorization-minimization (MM) algorithm.

• Guarantee to converge to local stationary point (regardless of choice of
initial point)

• SDP time complexity O(n6.5)⇒ an efficient solver based on ADMM,
O(n3)
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Solving sub-problem using ADMM

• Define R :=

[
C B
BT Θ̂

−1
2

]
, P =

[
P1 PT

21
P21 P2

]
:= R, W := Θ̂2P21

We reformulate the convex sub-problem as

min
R,P,W

− log detR + tr (S t R) + 1 {R � 0}+ αm ‖P1‖1 + βm ‖W‖2,1 (2)

s.t. P2 = Θ̂
−1
2

R = P

W = Θ̂2P21

where 1 {A } is the indicator function, S t :=

[
Σ̂1 −Σ̂1D t

−DT
t Σ̂1 γt I

]
• ADMM solves three subproblems w.r.t. R,P,W iteratively
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Sensitive to α,β
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Sensitivity to Θ̂2
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• Θ̂2 = L̂2 + σ
2G, where G = HHT/n2, Hi,j ∼ N(0,1), L̂2 is the inverse

covariance matrix of x2.

• The Signal-to-Noise Ratio (SNR) is defined as log

(
‖L̂2‖2

F
σ2

)
(dB)
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Sensitivity to Θ̂2 (cond. correlated latent var.)
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Sensitivity to Θ̂2 (cond. correlated latent var.)
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Sensitivity to Θ̂2 (cond. indep. latent var.)
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Sensitivity to Θ̂2
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