Semi-blind Subgraph Reconstruction in Gaussian Graphical Models

†Tianpei Xie, *Sijia Liu, *Alfred O. Hero

†Transaction Risk Management Team @ Amazon ¹ *University of Michigan, Ann Arbor

¹This work was completed while Tianpei Xie was a Phd student at University of Michigan

Backgrounds

- Learning a dependency graph from relational data is a key step in data visualization and analysis. Examples include
 - recommendation system
 - 2 social network analysis [Goyal et al., 2010]
 - 3 sensor network analysis [Joshi and Boyd, 2009, Liu et al., 2016]
- However, in many situations, only a limited set of data is accessible, due to
 - the limited budgets during data collections (e.g. labor, energy)
 - the restricted accessibility to data sources (e.g. data security, privacy)
- Semi-blinded subgraph topology learning problem: only see data on a subgraph but blind to the rest.

Conclusion

Semi-blinded subgraph topology learning problem

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Challen	ges				

- Challenges:
 - The influence of external latent data \Rightarrow the target network \Rightarrow bias in inference

probabilistic models: marginalization \Rightarrow false positives in edge detection

Figure: The red nodes are conditional independent given the blue node. After marginalizing the blue node, it creates a false connection in the graph

 Assumption: additional information from external sources ⇒ summary info. of latent data

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Settings					

- Random graph signal $\mathbf{x} \in \mathbb{R}^n \sim \mathcal{N}(\mathbf{0}, \Theta^{-1})$, Markovian w.r.t. $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $|\mathcal{V}| = n$ $\Rightarrow x_i \perp x_j | \mathbf{x}_{-\{i,j\}} \Leftrightarrow \Theta_{i,j} = 0$ iff $(i, j) \notin \mathcal{E}$.
- Consider
 - partition of V = V₁ ∪ V₂, non-overlapping, |V₁| = n₁, |V₂| = n₂, edge set between V₁, V₂ denoted as ε_{1,2}
 - accessible $\mathbf{x}_1 := \mathbf{x}_{\mathcal{V}_1} \in \mathbb{R}^{n_1}$, inaccessible *(latent)* $\mathbf{x}_2 := \mathbf{x}_{\mathcal{V}_2} \in \mathbb{R}^{n_2}$

• precision matrix
$$\boldsymbol{\Theta} := \begin{bmatrix} \boldsymbol{\Theta}_1 & \boldsymbol{\Theta}_{12} \\ \boldsymbol{\Theta}_{21} & \boldsymbol{\Theta}_2 \end{bmatrix}$$

• $\mathcal{G}_1 = (\mathcal{V}_1, \mathcal{E}_1)$, target network; $\mathcal{E}_1 := \mathcal{E} \cap (\mathcal{V}_1 \times \mathcal{V}_1) \Leftrightarrow \Theta_1$

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Settings					

- Random graph signal $\mathbf{x} \in \mathbb{R}^n \sim \mathcal{N}(\mathbf{0}, \Theta^{-1})$, Markovian w.r.t. $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $|\mathcal{V}| = n$ $\Rightarrow \mathbf{x}_i \perp \mathbf{x}_i | \mathbf{x}_{-\{i,j\}} \Leftrightarrow \Theta_{i,j} = 0$ iff $(i, j) \notin \mathcal{E}$.
- Consider
 - partition of 𝔅 = 𝔅₁ ∪ 𝔅₂, non-overlapping, |𝔅₁| = n₁, |𝔅₂| = n₂, edge set between 𝔅₁, 𝔅₂ denoted as 𝔅_{1,2}
 - accessible $\mathbf{x}_1 := \mathbf{x}_{\mathcal{V}_1} \in \mathbb{R}^{n_1}$, inaccessible (latent) $\mathbf{x}_2 := \mathbf{x}_{\mathcal{V}_2} \in \mathbb{R}^{n_2}$
 - precision matrix $\boldsymbol{\Theta} := \left[\begin{array}{cc} \boldsymbol{\Theta}_1 & \boldsymbol{\Theta}_{12} \\ \boldsymbol{\Theta}_{21} & \boldsymbol{\Theta}_2 \end{array} \right]$
- $\mathcal{G}_1 = (\mathcal{V}_1, \mathcal{E}_1)$, target network; $\mathcal{E}_1 := \mathcal{E} \cap (\mathcal{V}_1 \times \mathcal{V}_1) \Leftrightarrow \Theta_1$
- Goal: estimate ⊖1, given
 - $\label{eq:stable} \textbf{0} \mbox{ accessible data on } \mathcal{V}_1, \, \textbf{\textit{x}}_1 \Rightarrow \widehat{\boldsymbol{\Sigma}}_1 := \widehat{\mathbb{E}}[\textbf{\textit{x}}_1 \, \textbf{\textit{x}}_1^T], \, \mbox{sample marginal covariance}$

Network topology learning from partially shared information

Related works	

- w/o latent variables, many algorithms to estimate Θ of Gaussian graphical model. e.g.
 - 1 langularized ML, such as gLasso, [Friedman et al., 2008]
 - 2 quadratic approximation, QUIC, [Hsieh et al., 2011]
 - 3 lo regularized ML, [Marjanovic and Hero, 2015]

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Related	works				

- w/o latent variables, many algorithms to estimate Θ of Gaussian graphical model. e.g.
 - ℓ₁ regularized ML, such as gLasso, [Friedman et al., 2008]
 - 2 quadratic approximation, QUIC, [Hsieh et al., 2011]
 - 3 lo regularized ML, [Marjanovic and Hero, 2015]
- w/ latent variables, to estimate sub-matrix Θ_1 of full precision Θ
 - the latent variable Gaussian graphical model (LV-GGM) by [Chandrasekaran et al., 2012]

2 Key

$$\begin{split} \widetilde{\boldsymbol{\Theta}}_{1} &:= (\boldsymbol{\Sigma}_{1})^{-1} = \underbrace{\boldsymbol{\Theta}_{1}}_{\text{sparse}} - \underbrace{\boldsymbol{\Theta}_{12} \left(\boldsymbol{\Theta}_{2}\right)^{-1} \boldsymbol{\Theta}_{21}}_{\text{low-rank}} \\ &:= \boldsymbol{C} - \boldsymbol{M} \Rightarrow \text{signal} + \text{confounding factor} \end{split}$$

Oisadvantages

- the effect of latent variables is *uniform and global*, not change during propagation
- · does not exploit the dependency structure among latent variables

Global influence model vs. decayed influence model

(a) Global influence by LV-GGM (b) Decayed-influence latent variable model

- ε₂₁ dense
- i.e. \mathbf{x}_2 cond. indep given \mathbf{x}_1
- *E*₂₁ *sparse*
- no edge among nodes in \mathcal{V}_2 , edges among nodes in \mathcal{V}_2 , i.e. cond. dep $\sim \Theta_2$

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Our con	tributions				

- Propose the decayed-influence latent variable Gaussian graphical model (DiLat-GGM) that
 - takes into account the decayed influence effect during the propagation of info.
 - 2 fully utilizes the shared dependency information from external sources
 - 3 latent variable inference and selection

ents

Conclusion

References

LV-GGM vs. DiLat-GGM

	LV-GGM	DiLat-GGM
variables	$m{C}\in \mathbb{R}^{n_1 imes n_1},m{M}\in \mathbb{R}^{n_1 imes n_1}$	$\mathbf{C} \in \mathbb{R}^{n_1 \times n_1}$ $\mathbf{B} := \mathbf{\Theta}_{12} \mathbf{\Theta}_2^{-1} \in \mathbb{R}^{n_1 \times n_2}$
known	Σ ₁ , α, β	$\widehat{\boldsymbol{\Sigma}}_1, lpha, eta, \ \widehat{\boldsymbol{\Theta}}_2 \succ \boldsymbol{0} \in \mathbb{R}^{n_2 imes n_2}$
constraint	$\widetilde{\boldsymbol{\Theta}}_1 = \mathbf{C} - \mathbf{M} \succeq 0$	$\widetilde{\boldsymbol{\Theta}}_1 = \boldsymbol{C} - \boldsymbol{B} \widehat{\boldsymbol{\Theta}}_2 \boldsymbol{B}^{T} \succeq \boldsymbol{0}$
key	$M \succeq 0$, low-rank	$\Theta_{21} = \widehat{\Theta}_2 B^T = \begin{bmatrix} 0 \\ 0 \\ 0_{\delta v_2, 1} \end{bmatrix}, \text{ row-sparse}$
infer. on latent var	No	Yes. $p(x_2 x_1) = \mathcal{N}(\mu_{2 1}, \widehat{\Theta}_2), \mu_{2 1} = \mathbf{B}^T \mathbf{x}_1$
latent feat. sel.	No	Yes.
convexity	Yes	No
implemt.	ADMM	Convex-concave procedure (CCP) + ADMM

The decayed-influence latent variable Gaussian graphical model

The proposed DiLat-GGM solves the following

$$\min_{\boldsymbol{C},\boldsymbol{B}} -\log \det \left(\boldsymbol{C} - \boldsymbol{B} \widehat{\boldsymbol{\Theta}}_{2} \boldsymbol{B}^{T} \right) + \operatorname{tr} \left(\widehat{\boldsymbol{\Sigma}}_{1} \left(\boldsymbol{C} - \boldsymbol{B} \widehat{\boldsymbol{\Theta}}_{2} \boldsymbol{B}^{T} \right) \right) + \underbrace{\alpha_{m} \|\boldsymbol{C}\|_{1}}_{\text{sparsity of cond. graph}}$$

$$+ \qquad \beta_{m} \| \widehat{\boldsymbol{\Theta}}_{2} \boldsymbol{B}^{T} \|$$

$$-\underbrace{\beta_m \left\| \Theta_2 \mathbf{B}' \right\|_{2,1}}_{\mathbf{B}_{1,1}}$$

sparsity of & cross & latent feat. sel.

s.t. $\mathbf{C} - \mathbf{B}\widehat{\Theta}_2 \mathbf{B}^T \succeq \mathbf{0},$

where

•
$$\left\|\widehat{\Theta}_2 \boldsymbol{B}^T\right\|_{2,1} := \sum_{i \in \mathcal{V}_2} \left\|[\widehat{\Theta}_2 \boldsymbol{B}^T]_i\right\|_2$$
 is the mixed ℓ_{21} norm.

- An external source provides $\widehat{\Theta}_2 \Rightarrow$ partial corr. of \mathbf{x}_2
- DiLat-GGM is a Difference-of-Convex program and can be solved via convex-concave procedure (CCP) [Yuille et al., 2002, Lipp and Boyd, 2016]

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
The con	vex-concave pro	cedure			

• Example: find $x^* = \operatorname{argmin}(f(x) - g(x))$.

• Iteratively solve for $x_t := \operatorname{argmin}(f(x) - g(x_{t-1}) - \nabla g(x_{t-1})(x - x_{t-1}))$

• For DiLat-GGM, $g(\mathbf{B}) = \operatorname{tr} \left(\widehat{\Sigma}_1 \mathbf{B} \widehat{\Theta}_2 \mathbf{B} \right)^T$, the rest is $f(\cdot)$.

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Experim	ents				

- Compare algorithms:
 - DiLat-GGM
 - GLasso [Friedman et al., 2008]
 - LV-GGM [Chandrasekaran et al., 2012]
 - EM-GLasso [Yuan, 2012].
 - Generalized Laplacian learning (GenLap) [Pavez and Ortega, 2016]
- *m* i.i.d realizations of $\mathbf{x} = [x_1, \ldots, x_n]$. m = 400.
- Three types of graphs:
 - 1 The complete binary tree (*h* :=height)
 - 2 The grid (w :=width, h :=height)
 - 3 The Erdős-Rényi (n, p)

- Compare algorithms:
 - DiLat-GGM
 - GLasso [Friedman et al., 2008]
 - LV-GGM [Chandrasekaran et al., 2012]
 - EM-GLasso [Yuan, 2012].
 - Generalized Laplacian learning (GenLap) [Pavez and Ortega, 2016]
- *m* i.i.d realizations of $\mathbf{x} = [x_1, \ldots, x_n]$. m = 400.
- Three types of graphs:
 - 1 The complete binary tree (*h* :=height)
 - 2 The grid (w :=width, h :=height)
 - 3 The Erdős-Rényi (n, p)
- The **Jaccard distance error** [Jaccard, 1901, Choi et al., 2010] for edge selection: between two sets *A*, *B* as

$$dist_J(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|} \in [0, 1].$$

- **1** $A := \text{non-zero support set of estimated } \widehat{\Theta}_1$
- **2** $B := \mathcal{E}_1$, the ground true edge set

Conclusion

Comparison of mean edge selection error

Mean Jaccard distance error (×100%)						
Network	GLasso	EM- GLasso	GenLap	LV- GGM	DiLat- GGM	
complete binary tree $(h = 3, n_1 = 10)$	55.7	65.2	12.8	36.4	18.8	
complete binary tree $(h = 4, n_1 = 17)$	11.3	32.1	22.4	3.5	2.2	
complete binary tree $(h = 5, n_1 = 36)$	15.0	26.6	50.9	3.3	2.5	
grid $(w = 5, h = 5, n_1 = 15)$	39.3	40.7	5.7	23.3	12.8	
grid $(w = 7, h = 7, n_1 = 30)$	10.4	18.0	20.8	7.7	4.6	
grid $(w = 9, h = 9, n_1 = 49)$	10.3	25.1	32.7	7.8	5.4	
Erdős-Rényi $(n = 15, p = 0.05, n_1 = 10)$	19.6	25.4	7.9	15.0	13.9	
Erdős-Rényi $(n = 30, p = 0.05, n_1 = 20)$	9.6	22.3	23.0	6.2	4.5	
Erdős-Rényi $(n = 60, p = 0.05, n_1 = 40)$	10.8	32.5	61.1	8.1	6.5	
Erdős-Rényi $(n = 60, p = 0.1, n_1 = 40)$	39.3	43.5	63.4	34.1	27.2	
Erdős-Rényi $(n = 60, p = 0.15, n_1 = 40)$	54.9	56.2	62.1	52.2	50.2	

Conclusion

References

Comparison of Learned Network

(c) LV-GGM

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Conclus	sion				

- We propose the DiLat-GGM as a generalization of the LV-GGM
- The proposed model learns network topology given internal data and a summary of latent factors from external source
- Efficient algorithm based on CCP is proposed
- Future research direction: large-scale network learning, hierarchical models

Thank you !

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Referen	ces I				

- Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Latent variable graphical model selection via convex optimization. *The Annals of Statistics*, 40(4):1935–1967, 2012.
- Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey of binary similarity and distance measures. *Journal of Systemics, Cybernetics and Informatics*, 8(1):43–48, 2010.
- Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441, 2008.
- Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. Learning influence probabilities in social networks. In *Proceedings of the third ACM international conference on Web search and data mining*, pages 241–250. ACM, 2010.
- Cho-Jui Hsieh, Inderjit S Dhillon, Pradeep K Ravikumar, and Mátyás A Sustik. Sparse inverse covariance matrix estimation using quadratic approximation. *Advances in neural information processing systems*, pages 2330–2338, 2011.

References II

- Paul Jaccard. Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz, 1901.
- Siddharth Joshi and Stephen Boyd. Sensor selection via convex optimization. *IEEE Transactions on Signal Processing*, 57(2):451–462, 2009.
- Thomas Lipp and Stephen Boyd. Variations and extension of the convex–concave procedure. *Optimization and Engineering*, 17(2): 263–287, 2016.
- Sijia Liu, Sundeep Prabhakar Chepuri, Makan Fardad, Engin Maşazade, Geert Leus, and Pramod K Varshney. Sensor selection for estimation with correlated measurement noise. *IEEE Transactions on Signal Processing*, 64(13):3509–3522, 2016.
- Goran Marjanovic and Alfred O Hero. ℓ_0 sparse inverse covariance estimation. *IEEE Transactions on Signal Processing*, 63(12):3218–3231, 2015.
- Eduardo Pavez and Antonio Ortega. Generalized laplacian precision matrix estimation for graph signal processing. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6350–6354. IEEE, 2016.

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Referen	ices III				

- Ming Yuan. Discussion: Latent variable graphical model selection via convex optimization. *The Annals of Statistics*, 40(4):1968–1972, 2012.
- Alan L Yuille, Anand Rangarajan, and AL Yuille. The concave-convex procedure (cccp). *Advances in neural information processing systems*, 2: 1033–1040, 2002.

DiLat-GGM as Difference-of-Convex program

$$\min_{\boldsymbol{C},\boldsymbol{B}} \underbrace{-\log \det \left(\boldsymbol{C} - \boldsymbol{B}\widehat{\boldsymbol{\Theta}}_{2}\boldsymbol{B}^{T}\right) + \operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}_{1}\boldsymbol{C}\right)}_{f(\boldsymbol{C},\boldsymbol{B}) \text{ convex}} - \underbrace{\operatorname{tr}\left(\boldsymbol{\Sigma}_{1}\boldsymbol{B}\widehat{\boldsymbol{\Theta}}_{2}\boldsymbol{B}^{T}\right)}_{g(\boldsymbol{B}) \text{ convex}} + regularizer$$
s.t.
$$\boldsymbol{C} - \boldsymbol{B}\widehat{\boldsymbol{\Theta}}_{2}\boldsymbol{B}^{T} \succeq \boldsymbol{0},$$

•
$$f(\boldsymbol{C}, \boldsymbol{B}) = -\log \det \begin{bmatrix} \boldsymbol{C} & \boldsymbol{B} \\ \boldsymbol{B}^T & \widehat{\boldsymbol{\Theta}}_2^{-1} \end{bmatrix} + \operatorname{tr} \left(\widehat{\boldsymbol{\Sigma}}_1 \boldsymbol{C} \right) \operatorname{convex}$$

 $g(\boldsymbol{B}) = \operatorname{vec} \left(\boldsymbol{B}^T \right)^T \left(\widehat{\boldsymbol{\Sigma}}_1 \otimes \widehat{\boldsymbol{\Theta}}_2 \right) \operatorname{vec} \left(\boldsymbol{B}^T \right) \operatorname{convex}$

• can be solved via *convex-concave procedure* (CCP) [Yuille et al., 2002, Lipp and Boyd, 2016].

At iteration t,

$$(\boldsymbol{C}_{t+1}, \boldsymbol{B}_{t+1}) = \min_{\boldsymbol{C}, \boldsymbol{B}} \dots + \operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}_{1}\left(\boldsymbol{C} - 2\boldsymbol{B}\boldsymbol{D}_{t}^{\mathsf{T}}\right)\right)$$
(1)
s.t. ...

where $\nabla_{\boldsymbol{B}} g(\boldsymbol{B}_t) = 2\widehat{\Sigma}_1 \boldsymbol{B}_t \widehat{\Theta}_2, \ \boldsymbol{D}_t := \boldsymbol{B}_t \widehat{\Theta}_2.$

- SDP problem \Rightarrow convex
- CCP is a special form of *Majorization-minimization* (MM) algorithm.
- Guarantee to converge to local stationary point (regardless of choice of initial point)
- SDP time complexity $O(n^{6.5}) \Rightarrow$ an efficient solver based on ADMM, $O(n^3)$

Conclusion

References

Solving sub-problem using ADMM

• Define $\mathbf{R} := \begin{vmatrix} \mathbf{C} & \mathbf{B} \\ \mathbf{B}^T & \widehat{\Theta}_2^{-1} \end{vmatrix}$, $\mathbf{P} = \begin{bmatrix} \mathbf{P}_1 & \mathbf{P}_{21}^T \\ \mathbf{P}_{21} & \mathbf{P}_2 \end{vmatrix}$:= \mathbf{R} , $\mathbf{W} := \widehat{\Theta}_2 \mathbf{P}_{21}$ We reformulate the convex sub-problem as $-\log \det \mathbf{R} + \operatorname{tr}(\mathbf{S}_{t}\mathbf{R}) + \mathbb{1}\{\mathbf{R} \succeq \mathbf{0}\} + \alpha_{m} \|\mathbf{P}_{1}\|_{1} + \beta_{m} \|\mathbf{W}\|_{2,1}$ (2)min B.P.W s.t. $P_2 = \widehat{\Theta}_2^{-1}$ $\mathbf{R} = \mathbf{P}$ $W = \widehat{\Theta}_2 P_{21}$

where
$$\mathbb{1}\{A\}$$
 is the indicator function, $\boldsymbol{S}_t := \begin{bmatrix} \widehat{\boldsymbol{\Sigma}}_1 & -\widehat{\boldsymbol{\Sigma}}_1 \boldsymbol{D}_t \\ -\boldsymbol{D}_t^{\mathsf{T}} \widehat{\boldsymbol{\Sigma}}_1 & \gamma_t \boldsymbol{I} \end{bmatrix}$

ADMM solves three subproblems w.r.t. R. P. W iteratively

Sensitive to $\underline{\alpha}, \beta$

Conclusion

References

Sensitivity to $\widehat{\Theta}_2$

• $\widehat{\Theta}_2 = \widehat{L}_2 + \sigma^2 \mathbf{G}$, where $\mathbf{G} = \mathbf{H}\mathbf{H}^T / n_2$, $H_{i,j} \sim N(0, 1)$, \widehat{L}_2 is the inverse covariance matrix of \mathbf{x}_2 .

• The Signal-to-Noise Ratio (SNR) is defined as $\log \left(\frac{\|\hat{L}_{2}\|_{F}^{2}}{\sigma^{2}} \right)$ (dB)

Outline Problem Motivations Model Formulation Experiments Conclusion References

Sensitivity to $\widehat{\Theta}_2$ (cond. correlated latent var.)

 Outline
 Problem Motivations
 Model Formulation
 Experiments
 Conclusion
 References

Sensitivity to $\widehat{\Theta}_2$ (cond. correlated latent var.)

ts Conclusion

References

Sensitivity to $\widehat{\Theta}_2$ (cond. indep. latent var.)

Complete binary tree

Outline	Problem Motivations	Model Formulation	Experiments	Conclusion	References
Sensitiv	ity to $\widehat{\Theta}_2$				

