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Tracking Online and in the Internet of Things

• Online behavior is captured by third-party 
trackers and fingerprinting technologies.

• Internet of things (IoT) devices capture 
behavioral data.
• Accelerometers, heart rate sensors

• Sleep trackers, food logs

• Machine learning algorithms reveal 
information about race and political party 
[Kosinski et al. 2013], mood and 
personality type [Peppet 2014].

Mean-Field Obfuscation Adoption Introduction |     Model     |     Analysis     |     Discussion SLIDE 2



Obfuscation Adoption

Obfuscation: •

“the deliberate addition of ambiguous, 
confusing, or misleading information to interfere 
with surveillance and data collection” 

[Brunton & Nissenbaum 2015].

Examples:•
TrackMeNot• [Howe & Nissenbaum 2009]

CacheCloak• [Meyerowitz & Choudhury 2009]

Question: Can obfuscation adoption force •
machine learning agents to adopt privacy 
protection?
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Modeling Obfuscation using Game Theory

• Obfuscation is a strategic interaction between a machine learner and a set of users.

• Game theory studies strategic interactions between multiple rational agents.

• In equilibrium, each agent reacts optimally to the strategies of the other agents.
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N+1 Player Game Theory Model

• Mean field game: each 
user must respond 
optimally to the average 
behavior of the other 
users.

• Stackelberg game: the 
learner can promise (or 
not promise) a level of 
privacy protection, and 
then the users react.
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Empirical Risk Minimization (ERM)

• ERM is a machine learning method in which L estimates a predictor f by minimizing the 
empirical risk.

• Let  𝒛𝑖 i∈S = 𝐱i, yi i∈𝑆 denote the set of actual data vectors and labels.

• Let  ෤𝒛𝑖 i∈S = 𝐱i + 𝐯𝐢 +𝐰𝐢, yi i∈𝑆 denote the data including learner and user noise.

• The perturbed predictor is given by

𝒇𝑑 = argmin𝒇∈𝑭{𝜌𝑅 𝒇 +
1

𝑁
σ𝑖=1
𝑁 𝑙 ෤𝒛𝑖 , 𝒇 }.

• For comparison, the classifier that minimizes the expected loss is given by

𝒇∗ = argmin𝒇∈𝑭𝔼{𝜌𝑅 𝒇 + 𝑙 𝒵, 𝒇 }.

Mean-Field Obfuscation Adoption Introduction     |     Model |     Analysis     |     Discussion SLIDE 6



Quantification of Accuracy: 𝜖𝑔(𝜎𝐿 , ത𝜎𝑆
−𝑖 , 𝜎𝑆

𝑖)
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Definition 1. (𝜖𝑔-Accuracy) Let 𝜖𝑔 be a positive scalar. We say that 𝒇𝑑 is 

𝜖𝑔-accurate if it satisfies

𝔼 𝜌𝑅 𝒇𝑑 + 𝑙 𝒵, 𝒇𝑑 ≤ 𝔼{𝜌𝑅 𝒇∗ + 𝑙 𝒵, 𝒇∗ }.

Lemma 1. (Accuracy Level) The difference in expected loss between the 
perturbed classifier and the population-optimal classifier is on the order of

𝜖𝑔 𝜎𝐿, ത𝜎𝑆
−𝑖 , 𝜎𝑆
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𝑖 2



Quantification of Accuracy: 𝜖𝑔(𝜎𝐿 , ത𝜎𝑆
−𝑖 , 𝜎𝑆

𝑖)
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Quantification of Privacy: 𝜖𝑝(𝜎𝐿 , 𝜎𝑆
𝑖)
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Definition 2. (𝜖𝑝-Privacy) An algorithm 𝒜(𝐵) taking values in a set 𝐶

provides (𝜖𝑝, 𝛿)-differential privacy if, for all databases 𝐷 and 𝐷′ that 

differ in at most one entry, and for all 𝑐 ⊆ 𝐶,

ℙ 𝒜 𝐷 ∈ 𝑐 ≤ exp 𝜖𝑝 ℙ 𝒜 𝐷′ ∈ 𝑐 + 𝛿

Lemma 2. (Privacy Level) The differential privacy level 𝜖𝑝 ∈ (0,1) is on 

the order of

𝜖𝑔 𝜎𝐿, 𝜎𝑆
𝑖 ∝ 𝜎𝐿

2 + 𝜎𝑆
𝑖 2 −1/2



Quantification of Privacy: 𝜖𝑝(𝜎𝐿 , 𝜎𝑆
𝑖)
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Modeling Utility Functions
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𝑈𝐿 𝜎𝐿, ത𝜎𝑆 = 𝐴𝐿exp −𝜖𝑔(𝜎𝐿 , ത𝜎𝑆
−𝑖 , 𝜎𝑆

𝑖) − 𝐶𝐿𝟏{𝜎𝐿>0}

𝑈𝑆
𝑖 𝜎𝐿, ത𝜎𝑆

−𝑖 , 𝜎𝑆
𝑖 = 𝐴𝑆

𝑖 exp −𝜖𝑔(𝜎𝐿, ത𝜎𝑆
−𝑖 , 𝜎𝑆

𝑖) − 𝑃𝑆
𝑖 1 − exp −𝜖𝑝(𝜎𝐿, 𝜎𝑆

𝑖) − 𝐶𝐿𝟏{𝜎𝐿>0}



Solution Proceeds Backwards in Time

𝜎𝑆
1

Mean Field Game
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Protection

Threatened User 
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3
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Second-Stage Equilibrium: Mean-Field Game

Define the best response of a user • 𝑖 to the average perturbations of users −𝑖 by

𝐵𝑅𝑆( ത𝜎𝑆
−𝑖 | 𝜎𝐿) = arg max

𝜎𝑆
𝑖∈ℝ𝑀

𝑈𝑆
𝑖 𝜎𝐿, ത𝜎𝑆

−𝑖 , 𝜎𝑆
𝑖 .

For simplicity, consider • 𝐴𝑆
𝑖 = 𝐴𝑆, 𝑃𝑆

𝑖 = 𝑃𝑆, 𝐶𝑆
𝑖 = 𝐶𝑆 for all 𝑖 ∈ 1,… ,𝑁.

Then the MFG requirement is that•

ത𝜎𝑆
∗ ∈ 𝐵𝑅𝑆( ത𝜎𝑆

∗| 𝜎𝐿).
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Analysis: Mean Field Game

Lemma 3. If the learner does not perturb, then the users perturb either: 1) not at all 
or 2) as much as possible, depending on how much the field of other users perturb.

Privacy-Sensitive
𝐴𝑆 < 𝑃𝑆 − 𝐶𝑆

Privacy & Accuracy Sensitive
0 < 𝑃𝑆 − 𝐶𝑆 < 𝐴𝑆

Perturbation is Costly
𝑃𝑆 − 𝐶𝑆 < 0
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“But Frank jumped off a bridge…”

Analysis: Mean Field Game Best Response

“Don’t beat a dead horse”

My 
Noise
Level

(0,0)

∞

∞ (0,0)

∞

∞

• What is the best response in the middle region?

Others’ 
Noise Levels

My 
Noise
Level

Others’ 
Noise Levels
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Analysis: Mean Field Game Equilibrium
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Theorem 1. (𝑀𝐹𝐺 Equilibrium) Given a promised privacy 
protection level 𝜎𝐿

∗, the MFG equilibrium is given by the 
symmetric strategies ത𝜎𝑆

∗ = 𝜎𝑆
1∗ = 𝜎𝑆

2∗ = ⋯ = 𝜎𝑆
𝑁∗, where

ത𝜎𝑆 = ൞

0, if 𝑷 𝜎𝐿 < 𝑨𝑪 𝜎𝐿, 𝑀 < 𝑨𝑪(𝜎𝐿 , 0)

0,𝑀 , if 𝑨𝑪 𝜎𝐿, 𝑀 ≤ 𝑷 𝜎𝐿 ≤ 𝑨𝑪(𝜎𝐿 , 0)

𝑀, if 𝑨𝑪 𝜎𝐿, 𝑀 < 𝑨𝑪 𝜎𝐿, 0 < 𝑷 𝜎𝐿

and 𝑀 denotes a maximal level of perturbation.



Tracker Receives Zero Utility if All Users Perturb

𝐴𝑆
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Learner
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Obfuscation Cost

𝑈𝐿 𝜎𝐿, ത𝜎𝑆 = 𝐴𝐿exp −𝜖𝑔(𝜎𝐿 , ത𝜎𝑆
−𝑖 , 𝜎𝑆

𝑖) − 𝐶𝐿𝟏{𝜎𝐿>0}

𝑈𝑆
𝑖 𝜎𝐿, ത𝜎𝑆

−𝑖 , 𝜎𝑆
𝑖 = 𝐴𝑆

𝑖 exp −𝜖𝑔(𝜎𝐿 , ത𝜎𝑆
−𝑖 , 𝜎𝑆

𝑖) − 𝑃𝑆
𝑖 1 − exp −𝜖𝑝(𝜎𝐿 , 𝜎𝑆

𝑖) − 𝐶𝐿𝟏{𝜎𝐿>0}
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Mechanism: Learner Privacy
Commitment
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First-Stage Equilibrium: Stackelberg Game

• In differential privacy, a machine learner promises a limit on revealed information.

• Users then react to this limit, choosing whether to use the service.

• Therefore, 𝐿 is a Stackelberg leader, and the users are together a Stackelberg follower 
who plays Γ(𝜎𝐿), the user strategy induced by 𝜎𝐿.

• Can 𝐿 induce  Γ 𝜎𝐿 = 0 by perturbing with a sufficient 𝜎𝐿? (Otherwise, 𝜎𝐿
∗ = 0.)
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Can 𝐿 induce  Γ 𝜎𝐿 = 0?

Le
ar

n
er

 P
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tu
rb
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io

n
 𝜎

𝐿

User Privacy Sensitivity 𝑃𝑆

𝜎𝐿 > 𝑙𝑛
𝑃𝑆

𝑃𝑆 − 𝐶𝑆

−1/2
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The optimal user perturbation is•

ത𝜎𝑆 = Γ 𝜎𝐿 =

𝑀, if 𝜎𝐿 < 𝑙𝑛
𝑃𝑆

𝑃𝑆 − 𝐶𝑆

−1/2

0, 𝑖𝑓𝜎𝐿 > 𝑙𝑛
𝑃𝑆

𝑃𝑆 − 𝐶𝑆

−1/2
,

where 𝑀 is a large perturbation upper-bound.

Yes, the learner can induce zero perturbation •

from the learners by promising sufficient 
protection.
But is this too costly?•



Is Privacy Protection Incentive-Compatible for Tracker?
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The optimality equation for 𝐿 is

𝜎𝐿
∗ ∈ arg max

𝜎𝐿∈ℝ𝑀

𝑈𝐿 𝜎𝐿, Γ(𝜎𝐿) .
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The optimality equation for 𝐿 is
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Summary of Equilibrium Results

Future work can consider detection of obfuscation and analyze the impact of other 
forms of cost functions. We can also estimate cost functions from existing applications.
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# Parameter Regime ത𝜎𝑆
∗ 𝜎𝐿

∗ Significance

Status Quo 𝑃𝑆 − 𝐶𝑆 < 𝐴𝑆 0 0
Users prefer accuracy to privacy. They 
do not obfuscate their data.

Market 
Breakdown

𝑃𝑆 − 𝐶𝑆 > 𝐴𝑆 ∩
1

𝜌2𝑁
> ln

𝐴𝐿

𝐶𝐿
ln

𝑃𝑆

𝑃𝑆−𝐶𝑆

𝑀 0

Users prefer privacy, so they heavily 
obfuscate. The learner cannot do 
anything. The data market collapses.

Controlled 
Privacy

𝑃𝑆 − 𝐶𝑆 > 𝐴𝑆 ∩
1

𝜌2𝑁
< ln

𝐴𝐿

𝐶𝐿
ln

𝑃𝑆

𝑃𝑆−𝐶𝑆

0 Ƹ𝜏

Users threaten to heavily obfuscate, but 
the learner avoids this by committing to 
a level of privacy protection.



Backup Slides
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Data Flow Model

Perturbation (privacy 
protection) by learner L, 

with variance 𝜎𝐿
2.

Perturbation (obfuscation) by users 𝑖 ∈

1,2, … ,𝑁, with variances 𝜎𝑆
𝑖 2

Data vector of user 
𝑖 ∈ 1,2, … , 𝑁.
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Bi-Level Game Equilibrium Definition

Mean-Field Obfuscation Adoption Introduction     |     Model     |     Analysis |     Discussion SLIDE 27

Definition 3. (Perfect Bayesian Nash Equilibrium).  A perfect Bayesian Nash 
equilibrium (PBNE) of the overall game is  (𝜎𝐿

∗; 𝜎𝑆
1∗, 𝜎𝑆

2∗, … , 𝜎𝑆
𝑁∗) such that 

ത𝜎𝑆
∗ = 𝜎𝑆

1∗ = 𝜎𝑆
2∗ = ⋯ = 𝜎𝑆

𝑁∗, and

ത𝜎𝑆
∗ = 𝛤 𝜎𝐿

∗ = 𝐵𝑅𝑆 ത𝜎𝑆
∗ | 𝜎𝐿

∗ ,

𝜎𝐿
∗ ∈ arg max

𝜎𝐿∈ℝ𝑀

𝑈𝐿 𝜎𝐿, Γ(𝜎𝐿) .


