

<u>— BEIJING, CHINA -</u>

Autonomous Navigation of UAV in Large-scale Unknown Complex Environment with Deep Reinforcement Learning

Chao Wang, Jian Wang, Xudong Zhang, and Xiao Zhang

Department of Electronic Engineering Tsinghua University

TSINGHUA UNIVERSI

UAV navigation: creating a smarter city

- Autonomous navigation in large-scale unknown complex environment
 - Drone delivery: delivering goods in cities, emergency treatment
 - Anti-terrorism: remote investigation, military strike

ACTIONS SPEAK LOUDER THAN WORDS

FSINGHUA UNIVERSITY

<u>— BEIJING, CHINA</u>

Challenges of large-scale unknown complex environment

More intelligent algorithms need to be developed to cope with more complex environment

SLAM, simultaneously Localization and Mapping, is generally used to navigate and localize in indoor environment Sensing-and-avoidance is already used by Amazon to deliver goods in countryside

<u>— BEIJING, CHINA /</u>

Modeling UAV navigation as a reinforcement learning problem

Reinforcement Learning: learning to solve sequential decision making

State: s_t Action: a_t Dynamic: $p(s_{t+1}|s_t,a_t)$ Reward: $p(r_t|s_t,a_t)$ sensory output control profile unknown but stationary need to be designed **JA UNIVE**

State profile and action profile

 Deep reinforcement directly takes high-dimensional sensory outputs as states^[1]

 GPS to obtain the distance between target and present position of UAV

 State profile
 gyroscope to obtain the first-perspective direction of UAV

 Other sensors to sense local environment, such as range finders to sense obstacles

 Action profile
 gyroscope to obtain the first-perspective direction of UAV

FSINGHUA UNIVERSITY

Reward

- Sparse reward
 - Agent would be rewarded only if it arrives at the target position
- Non-sparse reward
 - Agent would be rewarded whenever and wherever

TSINGHUA UNIVERSITY

Partial observability of states

- Random environment
- Limited sensing capability
- Memoryless learning agent

ACTIONS SPEAK LOUDER THAN WORDS

Agent's action should be determined by its history observation and action trajectories

Attacking partial observability

ELECTRONIC ENGINEERING

AUNI

ELUNG. CHINA

• Policy function: projecting history trajectories to actions

 $a_t \sim \pi_{\theta} \left(a_t \mid h_t \right)$ where $h_t = [o_0, a_0, \cdots, a_{t-1}, o_t]$ observations actions history trajectory

Define value function and action-value function as

$$V^{\pi_{\theta}}(h_{t}) = E_{\tau_{1}}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} \left| h_{t} \right.\right] \qquad Q^{\pi_{\theta}}(h_{t}, a_{t}) = E_{\tau_{2}}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} \left| h_{t}, a_{t} \right.\right]$$

$$\tau_{2} \sim p(h_{t+1} \left| h_{t}, a_{t} \right) \pi(a_{t+1} \left| h_{t+1} \right) p(h_{t+2} \left| h_{t+1}, a_{t+1} \right) \pi(a_{t+2} \left| h_{t+2} \right) \cdots$$

$$\tau_{1} \sim \pi(a_{t} \left| h_{t} \right) p(h_{t+1} \left| h_{t}, a_{t} \right) \pi(a_{t+1} \left| h_{t+1} \right) p(h_{t+2} \left| h_{t+1}, a_{t+1} \right) \pi(a_{t+2} \left| h_{t+2} \right) \cdots$$

• Deterministic policy

Attacking partial observability

• Define target function as
$$J(\theta) = \sum_{h_0} V^{\pi_{\theta}}(h_0) \leftarrow -- \mathsf{Policy gradient}$$

• Gradient of the target function

$$\frac{\partial J(\theta)}{\partial \theta} = \sum_{h_0} \sum_{h} \rho_{h_0}^{\pi_{\theta}}(h) \sum_{a} \frac{\partial \pi_{\theta}(h,a)}{\partial \theta} Q^{\pi_{\theta}}(h,a)$$

 $a = \mu_{\theta}(h)$ $\pi_{\theta}(a|h) = \delta(a - \mu_{\theta}(h)) \longrightarrow \frac{\partial J(\theta)}{\partial \theta} = \sum_{h_{0}} \sum_{h} \rho_{h_{0}}^{\mu_{\theta}}(h) \frac{\partial Q^{\theta}(h_{t}, \mu^{\theta}(h_{t}))}{\partial a} \frac{\partial \mu^{\theta}(h_{t})}{\partial \theta}$

Partially observable VS fully observable

ELECTRONIC ENGINEERING

TSINGHUA UNIVERSITY

BELIING. CHINA

• Gradient of the target function of fully observable MDP

$$\frac{\partial J(\theta)}{\partial \theta} = \sum_{s_0} \sum_{s} \rho_{s_0}^{\pi_{\theta}}(s) \sum_{a} \frac{\partial \pi_{\theta}(s,a)}{\partial \theta} Q^{\pi_{\theta}}(s,a) \qquad \frac{\partial J(\theta)}{\partial \theta} = \sum_{s_0} \sum_{s} \rho_{s_0}^{\mu_{\theta}}(s) \frac{\partial Q^{\theta}(s_t,\mu^{\theta}(s_t))}{\partial a} \frac{\partial \mu^{\theta}(s_t)}{\partial \theta}$$

• Gradient of the target function of partially observable MDP

$$\frac{\partial J(\theta)}{\partial \theta} = \sum_{h_0} \sum_{h} \rho_{h_0}^{\pi_{\theta}}(h) \sum_{a} \frac{\partial \pi_{\theta}(h,a)}{\partial \theta} Q^{\pi_{\theta}}(h,a) \qquad \frac{\partial J(\theta)}{\partial \theta} = \sum_{h_0} \sum_{h} \rho_{h_0}^{\mu_{\theta}}(h) \frac{\partial Q^{\theta}(h_t,\mu^{\theta}(h_t))}{\partial a} \frac{\partial \mu^{\theta}(h_t)}{\partial \theta}$$

POMDPs can be regarded as MDPs nominally

FSINGHUA UNIVERSITY

Algorithm design: Fast-RDPG

- Fast-RDPG: Fast-Recurrent Deterministic Policy Gradient
 - Is based on existing algorithm named RDPG
 - Use Actor-Critic policy gradient architecture
 - Use two LSTMs to approximate Q(h,a) and $\mu(h)$
- RDPG VS Fast-RDPG
 - RDPG lacks of theoretical guarantee
 - Fast-RDPG breaks the temporal correlation of samples

Stochastic grad	ent of RDPG	Stoc	hastic gradient of	f Fast-RDP	G
$\sum_{t=1}^{T} \gamma^{t-1} \frac{\partial Q^{\mu}(h_{t},a)}{\partial a}$	$\left _{a=\mu^{\theta}(h_{t})}\frac{\partial\mu^{\theta}(h_{t})}{\partial\theta}\right $	Actor	$\partial Q^{ heta}\left(h_{t},\mu^{ heta}\left(h_{t} ight) ight)$ ∂a	$\frac{\partial \mu^{\theta}\left(h_{t}\right)}{\partial \theta}$	Critic

TSINGHUA UNIVERSITY

– BEIJING, CHINA

Generating stochastic environment

Every time the UAV completes a navigation task, the environment is regenerated randomly

In each environment, the height of the building is random

TSINGHUA UNIVERSITY

Sensors deployment

- UAV flies at fixed level and at constant speed
- Observations are composed of four parts

Simulation result: RDPGVS Fast-RDPG

• Compared with RDPG, Fast-RDPG breaks the temporal correlation of samples and therefore converges very fast

Randomly generate four pairs of starting points and ending points

ACTIONS SPEAK LOUDER THAN WORDS

SINGHUA UNIVERSITY

Conclusion and future work

Large-scale unknown complex environment brings challenges to UAV navigation

- + Highly complex environment disables traditional navigation methods
- Navigation agents need to learn to cope with complex environment

Proposed autonomous navigation of UAV with deep reinforcement learning
Model UAV navigation as a sequential decision making problem
Use deep reinforcement learning to solve the decision making problem
Design Fast-RDPG algorithm to attack Partially observable MDP

Future work

- + Test the proposed navigation algorithm in more real environment
- Directly cope with sparse reward

TSINGHUA UNIVERSITY

References

- Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., & Jawhar, I. (2014, May). UAVs for smart cities: Opportunities and challenges. In Unmanned Aircraft Systems (ICUAS), 2014 International Conference on (pp. 267-273). IEEE.
- 2. Cui, J. Q., Lai, S., Dong, X., & Chen, B. M. (2016). Autonomous navigation of UAV in foliage environment. Journal of Intelligent & Robotic Systems, 84(1-4), 259-276.
- 3. Bachrach, A., Prentice, S., He, R., & Roy, N. (2011). RANGE-Robust autonomous navigation in GPS-denied environments. Journal of Field Robotics, 28(5), 644-666.
- 4. Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on robotics and automation, 17(3), 229-241.
- 5. Israelsen, J., Beall, M., Bareiss, D., Stuart, D., Keeney, E., & van den Berg, J. (2014, May). Automatic collision avoidance for manually tele-operated unmanned aerial vehicles. In Robotics and Automation (ICRA), 2014 IEEE International Conference on (pp. 6638-6643). IEEE.
- 6. Zhang, A. M., & Kleeman, L. (2009). Robust appearance based visual route following for navigation in largescale outdoor environments. The International Journal of Robotics Research, 28(3), 331-356.

TSINGHUA UNIVERSITY

References

- 7. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Humanlevel control through deep reinforcement learning. Nature, 518(7540), 529-533.
- 8. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
- 9. Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural information processing systems (pp. 1008-1014).
- Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy gradient algorithms. International Conference on Machine Learning, 2014:387-395.
- 11. Heess, N., Hunt, J. J., Lillicrap, T. P., & Silver, D. (2015). Memory-based control with recurrent neural networks. arXiv preprint arXiv:1512.04455.
- Sutton, R. S., McAllester, D.A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In Advances in neural information processing systems (pp. 1057-1063).
- 13. Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

TSINGHUA UNIVERSITY

—— BEIJING, CHINA ——

• Thank you very much!

