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Motivation

Goal: measure linear relationship among variables
— can use correlation
Challenges: data can be privacy-sensitive
— how to guarantee privacy?’
— what is the best correlation metric?
— how to measure it?

o Analyze Gauss (AG) algorithm: input perturbation on 2nd-moment matrix [2]

Ditferential privacy Is formal and o DP is post-processing invariant = computation of U and V is (¢,,0)-DP

o However, projection/clustering do not satisfy DP =- can be modified at the cost of utility

quantifiable

Definition: Algorithm A(ID) taking values in a set T
provides (¢, d)-differential privacy if [2]

PAD) eS) <eP(AD") € S) +9,

for all measurable S C T and all neighboring data sets D
and D’ differing in a single entry.
Interpretation:

o (¢,0) | = privacy level T = noise level 1T = utility |
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CCA finds subspaces for different “views' of data
— “views are maximally correlated after projection
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Input:
e O-centered samples X and Y as Z =

CH Index

X5 Y |zl < 1
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Can we have a CCA algorithm that preserves
privacy and also provides good utility?

e privacy parameters €,, 0
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1. Compute C + %ZZT

2. Generate D x D symmetric matrix E [2]:
o {E;;:i€[D],j <i}drawn iid. ~ N(0,7%)
o 7 =2, /2108 (1)
O Eij — Eji

3. Compute C+ C+E

4. Extract sub-matrices from C according to:

minimize  [[U' X -V'Y]|% ) C,, )
C

Problem Formulation

Conclusion and Future Works
— variables or views: X € RV and Y € RPN

— goal: find subspaces U € R”**" and V € RP»*i
— how?: solve the following optimization problem [1]

Future directions:
e novel utility bounds

Remarks:

o for fixed € (privacy level): more samples — better
performance

e validation on high-dimensional real

data (multi-modal location data)

UV C — o for fixed N (sample size): higher ¢ — better performance

1 1
subject to NUTXXTU =1 NVTYYTV =1

C
C

T
T . L . .
Y e multi-view learning in neuroimaging

(fMRI/EEG)

e observation: the proposed algorithm can achieved

Output: meaningful utility even with strict privacy

1 . . )
NUTXYTV = 1. o Differentially-private approximates: C,,, C,, and C,,

Closed-form solution exists: [3]
e U < the top-K eigenvectors of C nyC 'C,.
e V < the top-/K eigenvectors of C 1nyC 'C,,
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