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Motivation

Goal: measure linear relationship among variables
→ can use correlation

Challenges: data can be privacy-sensitive
→ how to guarantee privacy?
→ what is the best correlation metric?
→ how to measure it?

Is there a
privacy-
preserving way
to compute
the best
correlation
index?

Canonical Correlation Analysis (CCA)

CCA finds subspaces for different “views” of data
→ “views” are maximally correlated after projection
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Can we have a CCA algorithm that preserves
privacy and also provides good utility?

Problem Formulation

→ variables or views: X ∈ RDx×N and Y ∈ RDy×N

→ goal: find subspaces U ∈ RDx×K and V ∈ RDy×K

→ how?: solve the following optimization problem [1]

minimize
U,V

‖U>X−V>Y‖2F

subject to
1

N
U>XX>U = I,

1

N
V>YY>V = I,

1

N
U>XY>V = I.

Closed-form solution exists: [3]

• U← the top-K eigenvectors of C−1xxCxyC
−1
yyCyx

• V← the top-K eigenvectors of C−1yyCyxC
−1
xxCxy

Differential Privacy (DP)

Differential privacy is formal and
quantifiable

Definition: Algorithm A(D) taking values in a set T
provides (ε, δ)-differential privacy if [2]

P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S) + δ,

for all measurable S ⊆ T and all neighboring data sets D
and D′ differing in a single entry.
Interpretation:
• (ε, δ) ↓ ⇒ privacy level ↑ ≡ noise level ↑ ⇒ utility ↓
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Algorithm: Differentially-private CCA

Input:
• 0-centered samples X and Y as Z = [X; Y]; ‖zn‖2 ≤ 1

• privacy parameters εo, δ

1. Compute C← 1
NZZ

>

2. Generate D ×D symmetric matrix E [2]:
• {Eij : i ∈ [D], j ≤ i} drawn i.i.d. ∼ N (0, τ 2)

• τ =
√
2

Nεo

√
2 log

(
1.25
δ

)
• Eij = Eji

3. Compute Ĉ← C + E

4. Extract sub-matrices from Ĉ according to:

Ĉ =

[
Ĉxx Ĉxy

Ĉ>xy Ĉyy

]
.

Output:
• Differentially-private approximates: Ĉxx, Ĉyy and Ĉxy

Using Ĉxx, Ĉyy and Ĉxy, we can compute
the subspaces U and V

Some Remarks

• Analyze Gauss (AG) algorithm: input perturbation on 2nd-moment matrix [2]

• DP is post-processing invariant ⇒ computation of U and V is (εo, δ)-DP

• However, projection/clustering do not satisfy DP ⇒ can be modified at the cost of utility

Simulation Results

Performance
Variation
with ε

0.001 0.3162 100
10

2

10
4

10
6

C
H

 I
n

d
e

x

Synth (N = 800k,  = 0.01)

CCA

DPCCAG

0.001 0.3162 100
10

3

10
4

10
5

C
H

 I
n

d
e

x

XRMB (p = 30,  = 0.01)

CCA

DPCCAG

0.001 0.3162 100
10

3

10
4

10
5

C
H

 I
n

d
e

x

MNIST (N
c
 = 3k,  = 0.01)

CCA

DPCCAG

Performance
Variation
with N

10
4

10
5

10
6

N

0.2

0.3

0.4

N
M

I

Synth (  = 2,  = 0.01)

CCA

DPCCAG

1k 3k 5k

p

0.02

0.04

0.06

0.08
0.1

N
M

I

XRMB (  = 1,  = 0.01)

CCA

DPCCAG

1k 3k 5k

N
c

0.2

0.4

0.6

0.8

N
M

I

MNIST (  = 0.1,  = 0.01)

CCA

DPCCAG

Performance
Variation
with δ

10
-4

10
-2

10
-2

10
-1

10
0

s
2

Synth.      (N = 800k,  = 2)
CCA

DPCCAG

10
-4

10
-2

1

1.5

2

2.5

3
3.5

C
H

 I
n

d
e

x

10
5Synth.      (N = 800k,  = 2)

CCA

DPCCAG

10
-4

10
-2

0.3

0.35

0.4

0.45

0.5

a
v

g
E

rr

XRMB (p = 30,  = 1)

CCA

DPCCAG

Conclusion and Future Works

Remarks:
• for fixed ε (privacy level): more samples → better

performance

• for fixed N (sample size): higher ε → better performance

• observation: the proposed algorithm can achieved
meaningful utility even with strict privacy

Future directions:
• novel utility bounds

• validation on high-dimensional real
data (multi-modal location data)

• multi-view learning in neuroimaging
(fMRI/EEG)
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